【题目】如图1,抛物线y=ax2+bx+4的图象过A(﹣1,0),B(4,0)两点,与y轴交于点C,作直线BC,动点P从点C出发,以每秒 个单位长度的速度沿CB向点B运动,运动时间为t秒,当点P与点B重合时停止运动.
(1)求抛物线的表达式;
(2)如图2,当t=1时,求S△ACP的面积;
(3)如图3,过点P向x轴作垂线分别交x轴,抛物线于E、F两点.
①求PF的长度关于t的函数表达式,并求出PF的长度的最大值;
②连接CF,将△PCF沿CF折叠得到△P′CF,当t为何值时,四边形PFP′C是菱形?
【答案】
(1)
解:∵抛物线y=ax2+bx+4的图象过A(﹣1,0),B(4,0)两点,
∴ ,解得: .
∴抛物线的表达式为y=﹣x2+3x+4.
(2)
解:令x=0,则y=4,
即点C的坐标为(0,4),
∴BC= =4 .
设直线BC的解析式为y=kx+4,
∵点B的坐标为(4,0),
∴0=4k+4,解得k=﹣1,
∴直线BC的解析式为y=﹣x+4.
当t=1时,CP= ,
点A(﹣1,0)到直线BC的距离h= = = ,
S△ACP= CPh= × × = .
(3)
解:①∵直线BC的解析式为y=﹣x+4,
∴CP= t,OE=t,设P(t,﹣t+4),F(t,﹣t2+3t+4),(0≤t≤4)
PF=﹣t2+3t+4﹣(﹣t+4)=﹣t2+4t,(0≤t≤4).
当t=﹣ =2时,PF取最大值,最大值为4.
②∵△PCF沿CF折叠得到△P′CF,
∴PC=P′C,PF=P′F,
当四边形PFP′C是菱形时,只需PC=PF.
∴ t=﹣t2+4t,
解得:t1=0(舍去),t2=4﹣ .
故当t=4﹣ 时,四边形PFP′C是菱形.
【解析】(1)将A、B点的坐标代入函数解析式中,即可得到关于a、b的二元一次方程,解方程即可得出结论;(2)令x=0可得出C点的坐标,设出直线BC解析式y=kx+4,代入B点坐标可求出k值,利用面积法求出点A到直线BC的距离结合三角形的面积,即可得出结论;(3)①由直线BC的解析式为y=﹣x+4可得知OE= CP,设出P、F点的坐标,由F点的纵坐标﹣P点的纵坐标即可得出PF的长度关于t的函数表达式,结合二次函数的性质即可求出最值问题;②由翻转特性可知PC=P′C,PF=P′F,若四边形PFP′C是菱形,则有PC=PF,由此得出关于t的二元一次方程,解方程即可得出结论.
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=ax2+2x+c与y轴交于点A(0,6),与x轴交于点B(6,0),点P是线段AB上方抛物线上的一个动点.
(1)求这条抛物线的表达式及其顶点坐标;
(2)当点P移动到抛物线的什么位置时,使得∠PAB=75°,求出此时点P的坐标;
(3)当点P从A点出发沿线段AB上方的抛物线向终点B移动,在移动中,点P的横坐标以每秒1个单位长度的速度变动,与此同时点M以每秒1个单位长度的速度沿AO向终点O移动,点P,M移动到各自终点时停止,当两个移点移动t秒时,求四边形PAMB的面积S关于t的函数表达式,并求t为何值时,S有最大值,最大值是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=x2+bx的图象如图,对称轴为直线x=1,若关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣1<x<4的范围内有解,则t的取值范围是( )
A.t≥﹣1
B.﹣1≤t<3
C.﹣1≤t<8
D.3<t<8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,O是坐标原点,ABCD的顶点A的坐标为(﹣2,0),点D的坐标为(0,2 ),点B在x轴的正半轴上,点E为线段AD的中点,过点E的直线l与x轴交于点F,与射线DC交于点G.
(1)求∠DCB的度数;
(2)当点F的坐标为(﹣4,0)时,求点G的坐标;
(3)连接OE,以OE所在直线为对称轴,△OEF经轴对称变换后得到△OEF',记直线EF'与射线DC的交点为H.
如图2,当点G在点H的左侧时,求证:△DEG∽△DHE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,点C在⊙O上,∠ABC的平分线与AC相交于点D,与⊙O过点A的切线相交于点E.
(1)∠ACB=°,理由是:;
(2)猜想△EAD的形状,并证明你的猜想;
(3)若AB=8,AD=6,求BD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为鼓励大学生创业,政府制定了小型企业的优惠政策,许多小型企业应运而生.某市统计了该市2015年1﹣5月新注册小型企业的数量,并将结果绘制成如图两种不完整的统计图:
(1)某市2015年1﹣5月份新注册小型企业一共家,请将折线统计图补充完整.
(2)该市2015年3月新注册小型企业中,只有2家是养殖企业,现从3月新注册的小型企业中随机抽取2家企业了解其经营情况.请以列表或画树状图的方法求出所抽取的2家企业恰好都是养殖企业的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】云南鲁甸发生地震后,某社区开展献爱心活动,社区党员积极向灾区捐款,如图是该社区部分党员捐款情况的条形统计图,那么本次捐款钱数的众数和中位数分别是( )
A.100元,100元
B.100元,200元
C.200元,100元
D.200元,200元
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,AC=BC,斜边AB=2,O是AB的中点,以O为圆心,线段OC的长为半径画圆心角为90°的扇形OEF,弧EF经过点C,则图中阴影部分的面积为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com