【题目】如图1,在平面直角坐标系中,O是坐标原点,ABCD的顶点A的坐标为(﹣2,0),点D的坐标为(0,2 ),点B在x轴的正半轴上,点E为线段AD的中点,过点E的直线l与x轴交于点F,与射线DC交于点G.
(1)求∠DCB的度数;
(2)当点F的坐标为(﹣4,0)时,求点G的坐标;
(3)连接OE,以OE所在直线为对称轴,△OEF经轴对称变换后得到△OEF',记直线EF'与射线DC的交点为H.
如图2,当点G在点H的左侧时,求证:△DEG∽△DHE.
【答案】
(1)
解:在Rt△AOD中,
∵tan∠DAO= = = ,
∴∠DAB=60°,
∵四边形ABCD是平行四边形,
∴∠DCB=∠DAB=60°.
(2)
∵四边形ABCD是平行四边形,
∴CD∥AB,
∴∠DGE=∠AFE,
又∵∠DEG=∠AEF,DE=AE,
∴△DEG≌△AEF,
∴DG=AF
∵AF=OF﹣OA=4﹣2=2,
∴DG=2,
∴点G的坐标为(2,2 ),
(3)
∵CD∥AB,
∴∠DGE=∠OFE,
∵△OEF经轴对称变换后得到△OEF′,
∴∠OFE=∠OF′E,
∴∠DGE=∠OF′E,
在Rt△AOD中,∵E是AD的中点,
∴OE= AD=AE
又∵∠EAO=60°
∴∠EOA=60°,∠AEO=60°,
又∵∠EOF'=∠EOA=60°,
∴∠EOF′=∠OEA,
∴AD∥OF′,
∴∠OF′E=∠DEH,
∴∠DEH=∠DGE,
又∵∠HDE=∠EDG,
∴△DHE∽△DEG.
【解析】(1)由于平行四边形的对角相等,只需求得∠DAO的度数即可,在Rt△OAD中,根据A、D的坐标,可得到OA、OD的长,那么∠DAO的度数就不难求了.(2)根据点E、F的坐标求得直线EF的方程,然后将点G的纵坐标代入该直线方程即可求得点G的横坐标.(3)根据A、D的坐标,易求得E点坐标,即可得到AE、OE的长,由此可判定△AOE是等边三角形,那么∠OEA=∠AOE=∠EOF′=60°,由此可推出OF′∥AE,即∠DEH=∠OF′E,根据轴对称的性质知∠OF′E=∠EFA,通过等量代换可得∠EFA=∠DGE=∠DEH,由此可证得所求的三角形相似.
【考点精析】通过灵活运用平行四边形的性质和作轴对称图形,掌握平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分;画对称轴图形的方法:①标出关键点②数方格,标出对称点③依次连线即可以解答此题.
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是平行四边形,AD=AC,AD⊥AC,E是AB的中点,F是AC延长线上一点.
(1)若ED⊥EF,求证:ED=EF;
(2)在(1)的条件下,若DC的延长线与FB交于点P,试判定四边形ACPE是否为平行四边形?并证明你的结论(请先补全图形,再解答);
(3)若ED=EF,ED与EF垂直吗?若垂直给出证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=﹣x2+2x的顶点为A,直线y=x﹣2与抛物线交于B,C两点.
(1)求A,B,C三点的坐标;
(2)作CD⊥x轴于点D,求证:△ODC∽△ABC;
(3)若点P为抛物线上的一个动点,过点P作PM⊥x轴于点M,则是否还存在除C点外的其他位置的点,使以O,P,M为顶点的三角形与△ABC相似?若存在,请求出这样的P点坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市销售甲、乙两种糖果,购买3千克甲种糖果和1千克乙种糖果共需44元,购买1千克甲种糖果和2千克乙种糖果共需38元.
(1)求甲、乙两种糖果的价格;
(2)若购买甲、乙两种糖果共20千克,且总价不超过240元,问甲种糖果最少购买多少千克?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC是等边三角形,点D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF,CF,连接BE并延长交CF于点G.下列结论: ①△ABE≌△ACF;②BC=DF;③S△ABC=S△ACF+S△DCF;④若BD=2DC,则GF=2EG.其中正确的结论是 . (填写所有正确结论的序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线y=ax2+bx+4的图象过A(﹣1,0),B(4,0)两点,与y轴交于点C,作直线BC,动点P从点C出发,以每秒 个单位长度的速度沿CB向点B运动,运动时间为t秒,当点P与点B重合时停止运动.
(1)求抛物线的表达式;
(2)如图2,当t=1时,求S△ACP的面积;
(3)如图3,过点P向x轴作垂线分别交x轴,抛物线于E、F两点.
①求PF的长度关于t的函数表达式,并求出PF的长度的最大值;
②连接CF,将△PCF沿CF折叠得到△P′CF,当t为何值时,四边形PFP′C是菱形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我国是世界上严重缺水的国家之一,全国总用水量逐年上升,全国总用水量可分为农业用水量、工业用水量和生活用水量三部分.为了合理利用水资源,我国连续多年对水资源的利用情况进行跟踪调查,将所得数据进行处理,绘制了2008年全国总用水量分布情况扇形统计图和2004﹣2008年全国生活用水量折线统计图的一部分如下(A指农业用水量;B指工业用水量;C指生活用水量):
(1)2007年全国生活用水量比2004年增加了16%,则2004年全国生活用水量为____亿m3 , 2008年全国生活用水量比2004年增加了20%,则2008年全国生活用水量为____亿m3;
(2)根据以上信息,请直接在答题卡上补全折线统计图;
(3)根据以上信息2008年全国总水量为___亿m3;
(4)我国2008年水资源总量约为2.75×104亿m3 , 根据国外的经验,一个国家当年的全国总用水量超过这个国家年水资源总量的20%,就有可能发生“水危机”.依据这个标准,2008年我国是否属于可能发生“水危机”的行列?并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com