【题目】根据要求完成画图或作答:
如图所示,已知点、、是网格纸上的三个格点.
(1)画射线,画线段,过点画的平行线;
(2)过点画直线的垂线,垂足为点,则点到的距离就是线段_________的长度.
(3)线段_______线段(填“”或“”),理由是_____________.
【答案】(1)画图见解析;(2)画图见解析,BD;(3)>,直线外一点与直线上各点连接的线段中,垂线段最短
【解析】
(1)根据线段有两个端点,射线是向一方无限延伸的画出射线AC、线段AB,根据平行线的性质,利用网格的特点画出BE//AC即可;
(2)利用网格特征画出BD⊥AC即可,根据点到直线距离的定义即可得答案.
(3)根据直线外一点与直线上各点连接的线段中,垂线段最短即可得答案.
(1)如图所示:射线AC、线段AB、AC的平行线BE即为所求;
(2)如图所示:BD即为所求,
∵BD⊥AC于D,
∴点到的距离就是线段BD,
故答案为:BD
(3)∵BD⊥AC于D,直线外一点与直线上各点连接的线段中,垂线段最短,
∴线段AB>线段BD,
故答案为:>,直线外一点与直线上各点连接的线段中,垂线段最短
科目:初中数学 来源: 题型:
【题目】如图,A、B两点在数轴上,点A表示的数为–10,OB=4OA,点M以每秒2个单位长度的速度从点A开始向左运动,点N以每秒3个单位长度的速度从点B开始向左运动(点M和点N同时出发).
(1)数轴上点B对应的数是__________,线段AB的中点C对应的数是__________;
(2)经过几秒,点M、点N到原点的距离相等?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.
(1)判断直线DE与⊙O的位置关系,并说明理由;
(2)若AC=6,BC=8,OA=2,求线段DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】列方程解题:据专家预测今年受厄尔尼诺现象影响,我国大部分地区可能遇到洪涝灾害.进入防汛期前,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:
“你们是用9天完成4800米长的大坝加固任务的”?
“我们加固600米后采用新的加固模式,这样每天加固长度是原来的2倍”,
通过这段对话请你求出该地驻军原来每天加固的米数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】怡然美食店的A、B两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1120元,总利润为280元.
(1)该店每天卖出这两种菜品共多少份?
(2)该店为了增加利润,准备降低A种菜品的售价,同时提高B种菜品的售价,售卖时发现,A种菜品售价每降0.5元可多卖1份;B种菜品售价每提高0.5元就少卖1份,如果这两种菜品每天销售总份数不变,那么这两种菜品一天的总利润最多是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),在△ABC中,AB=BC,P为AB边上一点,连接CP,以PA、PC为邻边作APCD,AC与PD相交于点E,已知∠ABC=∠AEP=(0°<<90°).
(1)求证: ∠EAP=∠EPA;
(2)APCD是否为矩形?请说明理由;
(3)如图(2),F为BC中点,连接FP,将∠AEP绕点E顺时针旋转适当的角度,得到∠MEN(点M、N分别是∠MEN的两边与BA、FP延长线的交点).猜想线段EM与EN之间的数量关系,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两人在5次打靶测试中命中的环数如下:
甲:8,8,7,8,9
乙:5,9,7,10,9
(1)填写下表:
平均数 | 众数 | 中位数 | 方差 | |
甲 | 8 | | 8 | 0.4 |
乙 | | 9 | | 3.2 |
(2)教练根据这5次成绩,选择甲参加射击比赛,教练的理由是什么?
(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差 .(填“变大”、“变小”或“不变”).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=ax2+2ax+c交x轴于A,B两点,交y轴于点C(0,3),tan∠OAC=.
(1)求抛物线的解析式;
(2)点H是线段AC上任意一点,过H作直线HN⊥x轴于点N,交抛物线于点P,求线段PH的最大值;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com