【题目】如图,在Rt△ABC中,∠C=90°,O为斜边AB上一点,以O为圆心、OA为半径的圆恰好与BC相切于点D,与AB的另一个交点为E,连接DE.
(1)请找出图中与△ADE相似的三角形,并说明理由;
(2)若AC=3,AE=4,试求图中阴影部分的面积;
(3)小明在解题过程中思考这样一个问题:如图中的⊙O的圆心究竟是怎么确定的呢?请你在如图中利用直尺和圆规找到符合题意的圆心O,并写出你的作图方法.
【答案】(1)见解析;(2)π-;(3)见解析.
【解析】
(1)BC为圆O的切线,连接OD,可推出∠EAD=∠ODA=∠DAC,由∠EDA=∠DCA=90°,可推出△AED∽△ADC.
(2)根据△AED∽△ADC,可得出AD的长度,再根据△AED的三边比例关系,可推出∠AOD=120,再利用扇形面积减三角形的面积即可得到阴影部分面积.
(3)①作∠BAC的角平分线交BC边于点D,②过点D作BC的垂线交AB于点O.(注:方法不唯一)
解:(1)△ACD与△ADE相似,如图(1)所示,
连接OD,∵⊙O恰好与BC相切于点D,
∴∠ODB=90°,
又∵∠C=90°,
∴OD∥AC,
∴∠ODA=∠DAC,
∵OD=OA,
∴∠ODA=∠OAD,
∴∠OAD=∠DAC,
∵AE为⊙O的直径,
∴∠ADE=90°,
∴∠ADE=∠C,
∴△ACD∽△ADE.
(2)∵△ACD∽△ADE,
∴,
∴AD=2,
∵AC=3,根据勾股定理得CD=,
∴sin∠DAC=,
∴∠DAC=∠EAD=∠ODA=30°,
∴∠AOD=120°,
∴S△OAD=OA2=,
∴S=.
(3)如图2所示,作图方法:
①以A为圆心,AC长为半径画弧,交AB于点H,以H、C为圆心,大于CH长为半径画弧,交于点G,连接AG,AG即为∠BAC的角平分线,AG与BC的交点即为点D.
②以D为圆心,DC长为半径画弧,交BD于点C′,以C、C′为圆心,大于CC′为半径画弧,分别交于点E、F,连接EF,EF即为CC′的垂直平分线,EF与AB的交点即为点O.
科目:初中数学 来源: 题型:
【题目】已知在梯形ABCD中,AD∥BC,AB=BC,DC⊥BC,且AD=1,DC=3,点P为边AB上一动点,以P为圆心,BP为半径的圆交边BC于点Q.
(1)求AB的长;
(2)当BQ的长为时,请通过计算说明圆P与直线DC的位置关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:
信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;
信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.
根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校为了增强学生体质,决定开设以下体育课外活动项目:A:篮球 B:乒乓球C:羽毛球 D:足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:
(1)这次被调查的学生共有 人;
(2)请你将条形统计图(2)补充完整;
(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=-x+1与反比例函数y=(x<0)的图象交于点A,与x轴正半轴交于点B,且S△AOB=1,则反比例函数解析式为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M不与B、C重合),过点C作CN垂直DM交AB于点N,连结OM、ON、MN.下列五个结论:①△CNB≌△DMC;②;③ON⊥OM;④若AB=2,则的最小值是1;⑤.其中正确结论是_________.(只填番号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,﹣3),动点P在抛物线上.
(1)求抛物线的解析式;
(2)若动点P在第四象限内的抛物线上,过动点P作x轴的垂线交直线AC于点D,交x轴于点E,垂足为E,求线段PD的长,当线段PD最长时,求出点P的坐标;
(3)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com