【题目】当三角形中的一个内角α是另一个内角β的一半时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为直角三角形,则这个“特征角”的度数为______.
科目:初中数学 来源: 题型:
【题目】(1)如图1,在矩形ABCD中,AB=2,BC=5,∠MPN=90°,且∠MPN的直角顶点在BC边上,BP=1.
①特殊情形:若MP过点A,NP过点D,则= .
②类比探究:如图2,将∠MPN绕点P按逆时针方向旋转,使PM交AB边于点E,PN交AD边于点F,当点E与点B重合时,停止旋转.在旋转过程中,的值是否为定值?若是,请求出该定值;若不是,请说明理由.
(2)拓展探究:在Rt△ABC中,∠ABC=90°,AB=BC=2,AD⊥AB,⊙A的半径为1,点E是⊙A上一动点,CF⊥CE交AD于点F.请直接写出当△AEB为直角三角形时的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题背景:在综合与实践课上,老师让同学们以“矩形纸片的剪拼”为主题开展数学活动.如图1:将矩形纸片ABCD沿对角线AC剪开,得到△ABC和△ACD.并且量AB=4cm,AC=8cm,问题解决:
(1)将图1中的△ACD以点为A旋转中心,按逆时针方向能转∠α,使∠α=∠BAC,得到如图2所示的△AC'D,过点C作AC'的平行线,与DC'的延长线交于点E,则四边形ACEC'的形状是 .
(2)缜密小组将图1中的△ACD以点A为旋转中心,按逆时针方向旋转,使B、A、D三点在同一条直线上,得到如图3所示的△AC'D,连接CC',取CC'的中点F,连接AF并延长到点G,使FG=AF,连接CG、C'G,得到四边形ACGC',发现它是正方形,请你证明这个结论.
实践探究:(3)创新小组在缜密小组发现结论的基础上,进行如下操作:将△ABC沿着BD方向平移,使点B与点A重合,此时A点平移至A'点,A'C与BC'相交于点H,如图4所示,连接CC',试求tan∠C'CH的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:经过三角形一边中点,且平分三角形周长的直线叫做这个三角形在该边上的中分线,其中落在三角形内部的部分叫做中分线段.
(1)如图,△ABC中,AC>AB,DE是△ABC在BC边上的中分线段,F为AC中点,过点B作DE的垂线交AC于点G,垂足为H,设AC=b,AB=c.
①求证:DF=EF;
②若b=6,c=4,求CG的长度;
(2)若题(1)中,S△BDH=S△EGH,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2019年1月有300名教师参加了“新技术支持未来教育”培训活动,会议就“面向未来的教育”和“家庭教育”这两个问题随机调查了60位教师,并对数据进行了整理、描述和分析.下面给出了部分信息:
a.关于“家庭教育”问题发言次数的频数分布直方图如下(数据分成6组:0≤x<4,4≤x<8,8≤x<12,12≤x<16,16≤x<20,20≤x≤24):
b.关于“家庭教育”问题发言次数在8≤x<12这一组的是:
8899910101010101011111111
c.“面向未来的教育”和“家庭教育”这两问题发言次数的平均数、众数、中位数如下:
问题 | 平均数 | 中位数 | 众数 |
面向未来的学校教育 | 11 | 10 | 9 |
家庭教育 | 12 | m | 10 |
根据以上信息,回答下列问题:
(1)表中m的值为______;
(2)在此次采访中,参会教师更感兴趣的问题是______(填“面向未来的教育”或“家庭教育”),理由是______;
(3)假设所有参会教师都接受调查,估计在“家庭教育”这个问题上发言次数超过8次的参会教师有______位.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在⊙O中,AB为直径,AC为弦.过BC延长线上一点G,作GD⊥AO于点D,交AC于点E,交⊙O于点F,M是GE的中点,连接CF,CM.
(1)判断CM与⊙O的位置关系,并说明理由;
(2)若∠ECF=2∠A,CM=6,CF=4,求MF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知OA是⊙O的半径,AB为⊙O的弦,过点O作OP⊥OA,交AB的延长线上一点P,OP交⊙O于点D,连接AD,BD,过点B作⊙O的切线BC交OP于点C
(1)求证:∠CBP=∠ADB;
(2)若O4=4,AB=2,求线段BP的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2﹣3ax+c的图象与x轴交于点A、B,与y轴交于点C直线y=﹣x+4经过点B、C.
(1)求抛物线的表达式;
(2)过点A的直线交抛物线于点M,交直线BC于点N.
①点N位于x轴上方时,是否存在这样的点M,使得AM:NM=5:3?若存在,求出点M的坐标;若不存在,请说明理由.
②连接AC,当直线AM与直线BC的夹角∠ANB等于∠ACB的2倍时,请求出点M的横坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com