【题目】我县某公司参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐助给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量 (单位:个)与销售单价 (单位:元/个)之间的关系式为.
(1) 若许愿瓶的进价为6元/个,按照上述市场调查的销售规律,求销售利润 (单位:元)与销售单价 (单位:元/个)之间的函数关系式;
(2) 在(1)问的条件下,若许愿瓶的进货成本不超过900元,要想获得最大利润,试确定这种许愿瓶的销售单价,并求出此时的最大利润.
【答案】(1) ;(2)销售单价定为每个15元时,利润最大为1350元.
【解析】试题分析:(1)利用w=销量×每个利润,进而得出函数关系式;
(2)利用进货成本不超过900元,得出x的取值范围,进而得出函数最值.
试题解析:解:(1)由题意得:w=(x﹣6)(﹣30x+600)=﹣30x2+780x﹣3600,∴w与x的函数关系式为w=﹣30x2+780x﹣3600;
(2)由题意得:6(﹣30x+600)≤900,解得:x≥15,在w=﹣30x2+780x﹣3600中,对称轴为:x=﹣=13.∵a=﹣30,∴当x>13时,w随x的增大而减小,∴x=15时,w最大为:(15﹣6)(﹣30×15+600)=1350,∴销售单价定为每个15元时,利润最大为1350元.
科目:初中数学 来源: 题型:
【题目】已知直线l1:y=x+n﹣2与直线l2:y=mx+n相交于点P(1,2).
(1)求m,n的值;
(2)请结合图象直接写出不等式mx+n>x+n﹣2的解集.
(3)若直线l1与y轴交于点A,直线l2与x轴交于点B,求四边形PAOB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】请阅读下列材料:
问题:如图1,在等边三角形ABC内有一点P,且PA=2,PB=,PC=1、求∠BPC度数的大小和等边三角形ABC的边长.
李明同学的思路是:将△BPC绕点B逆时针旋转60°,画出旋转后的图形(如图2),连接PP′,可得△P′PC是等边三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可证),从而得到∠BPC=∠AP′B=__________;,进而求出等边△ABC的边长为__________;
问题得到解决.
请你参考李明同学的思路,探究并解决下列问题:如图3,在正方形ABCD内有一点P,且PA=,BP=,PC=1.求∠BPC度数的大小和正方形ABCD的边长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】当﹣2<x<2时,下列函数中,函数值y随自变量x增大而增大的有( )个.
①y=2x;②y=2﹣x;③y=﹣;④y=x2+6x+8.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中.
(1)请直接写出点、两点的坐标::___________;:___________;
(2)若把向上平移3个单位,再向右平移2个单位得,请在上图中画出,并写出点的坐标___________;
(3)求的面积是多少.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着气温的升高,空调的需求量大增.某家电超市对每台进价分别为2000元、1700元的、两种型号的空调,近两周的销售情况统计如下:
销售时段 | 销售量 | 销售收入 | |
型号 | 型号 | ||
第一周 | 6台 | 7台 | 31000元 |
第二周 | 8台 | 11台 | 45000元 |
(1)求、两种型号的空调的销售价;
(2)若该家电超市准备用不多于54000元的资金,采购这两种型号的空调30台,求种型号的空调最多能采购多少台?
(3)在(2)的条件下,该家电超市售完这30台空调能否实现利润不低于15800元的目标?若能,请给出采购方案.若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明在课外学习时遇到这样一个问题:
定义:如果二次函数y=a1x2+b1x+c1(a1≠0,a1,b1,c1是常数)与y=a2x2+b2x+c2(a2≠0,a2,b2,c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则称这两个函数互为“旋转函数”.
求函数y=﹣x2+4x﹣3的“旋转函数”.小明是这样思考的:由函数y=﹣x2+4x﹣3可知,a1=﹣1,b1=4,c1=﹣3,根据a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2,就能确定这个函数的“旋转函数”.
(1)请参考小明的方法写出函数y=﹣x2+4x﹣3的“旋转函数”;
(2)若函数与y=x2﹣3nx+n互为“旋转函数”,求.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某地计划用120~180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万米3.
(1)写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万米3)之间的函数关系式.并给出自变量x的取值范围;
(2)由于工程进度的需要,实际平均每天运送土石方比原计划多20%,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万米3?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com