精英家教网 > 初中数学 > 题目详情

【题目】如图矩形ABCD中,AD=1,CD= ,连接AC,将线段AC、AB分别绕点A顺时针旋转90°至AE、AF,线段AE与弧BF交于点G,连接CG,则图中阴影部分面积为

【答案】
【解析】解:在矩形ABCD中, ∵AD=1,CD=
∵AC=2,tan∠CAB= =
∴∠CAB=30°,
∵线段AC、AB分别绕点A顺时针旋转90°至AE、AF,
∴∠CAE=∠BAF=90°,
∴∠BAG=60°,
∵AG=AB=
∴阴影部分面积=SABC+S扇形ABG﹣SACG= × ×1+ × ×2=
故答案为:
根据勾股定理得到AC=2,由三角函数的定义得到∠CAB=30°,根据旋转的性质得到∠CAE=∠BAF=90°,求得∠BAG=60°,然后根据图形的面积即可得到结论.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点A、B在反比例函数y= (k>0,x>0)的图象上,过点A、B作x轴的垂线,垂足分别为M、N,延长线段AB交x轴于点C,若OM=MN=NC,△AOC的面积为6,则k的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,∠C>B,AE平分∠BAC,F为射线AE上一点(不与点E重合),且FDBCD;

(1)如果点F与点A重合,且∠C=50°,B=30°,如图1,求∠EFD的度数;

(2)如果点F在线段AE上(不与点A重合),如图2,问∠EFD与∠C﹣B有怎样的数量关系?并说明理由.

(3)如果点FABC外部,如图3,此时∠EFD与∠C﹣B的数量关系是否会发生变化?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠B=90°,BC=5 ,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.
(3)当t为何值时,△DEF为直角三角形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,直线的表达式为AB的坐标分别为

(1,0),(0,2),直线AB与直线相交于点P

(1)求直线AB的表达式;

(2)求点P的坐标;

(3)若直线上存在一点C,使得APC的面积是APO的面积的2倍,直接写出点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:四边形ABCD的对角线ACBD相交于点O,则下列条件不能判定四边形ABCD是平行四边形的是  

A. B.

C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线AB,CD相交于点O,OE平分∠AOD,FO⊥AB,垂足为O,∠BOD=∠DOE.

(1)求BOF的度数;

(2)请写出图中与BOD相等的所有的角.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在扇形OAB中,∠O=60°,OA=4 ,四边形OECF是扇形OAB中最大的菱形,其中点E,C,F分别在OA, ,OB上,则图中阴影部分的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,经过原点的抛物线y=﹣x2+2mx(m>0)与x轴的另一个交点为A.过点P(1,m)作直线PM⊥x轴于点M,交抛物线于点B,记点B关于抛物线对称轴的对称点为C(点B,点C不重合).连接CB,CP.

(1)当m= 时,求点A的坐标及BC的长;
(2)当m>1时,连接CA,当CA⊥CP时,求m的值;
(3)过点P作PE⊥PC且PE=PC,问是否存在m,使得点E恰好落在坐标轴上?若存在,请直接写出所有满足条件的点E的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案