精英家教网 > 初中数学 > 题目详情

【题目】ABC中,∠C>B,AE平分∠BAC,F为射线AE上一点(不与点E重合),且FDBCD;

(1)如果点F与点A重合,且∠C=50°,B=30°,如图1,求∠EFD的度数;

(2)如果点F在线段AE上(不与点A重合),如图2,问∠EFD与∠C﹣B有怎样的数量关系?并说明理由.

(3)如果点FABC外部,如图3,此时∠EFD与∠C﹣B的数量关系是否会发生变化?请说明理由.

【答案】(1)10°.(2)EFD=C﹣B),证明见解析;(3EFD=C﹣B).)

【解析】

1)由三角形内角和定理先求出∠BAC=100°,再根据AE平分∠BAC,可得∠BAE=50°,根据三角形的外角性质可得∠AEC=80°,再根据直角三角形两锐角互余即可求得∠EFD的度数;

(2)根据三角形的外角的性质可以得到∠FEC=B+BAE,然后根据三角形内角和定理以及角平分线的定义得到∠BAE=BAC=(180°-B-C)=90°-B+C),求得∠FEC,再根据直角三角形的两个锐角互余求得∠EFD的度数;

(3)根据(2)可以得到∠AEC=90°+B-C),根据对顶角相等即可求得∠DEF,然后利用直角三角形的两个锐角互余即可求解.

(1)∵∠C=50°,B=30°,

∴∠BAC=180°﹣50°﹣30°=100°.

AE平分∠BAC,

∴∠BAE=50°,

∴∠AEC=B+BAE=80°,

RtADEEFD=90°﹣80°=10°;

(2)EFD=C﹣B),理由如下:

AE平分∠BAC,

∴∠BAE=(180°-B-C)=90°﹣C+B),

∵∠AECABE的外角,

∴∠AEC=B+90°﹣C+B)=90°+B﹣C),

FDBC,

∴∠FDE=90°,

∴∠EFD=90°﹣90°﹣B﹣C),

∴∠EFD=C﹣B);

(3)EFD=C﹣B),理由如下:

如图,

AE平分∠BAC,

∴∠BAE=(180°-B-C),

∵∠DEFABE的外角,

∴∠DEF=B+(180°-B-C)=90°+B﹣C),

FDBC,

∴∠FDE=90°,

∴∠EFD=90°﹣90°﹣B﹣C)

∴∠EFD=C﹣B).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】计算:

(1)÷× (2)( 2)

(3)(2)2017×(2+)20162()0 (4)(a2b)÷()()

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某宾馆为庆祝开业,在楼前悬挂了许多宣传条幅.如图所示,一条幅从楼顶A处放下,在楼前点C处拉直固定.小明为了测量此条幅的长度,他先在楼前D处测得楼顶A点的仰角为31°,再沿DB方向前进16米到达E处,测得点A的仰角为45°.已知点C到大厦的距离BC=7米,∠ABD=90°.请根据以上数据求条幅的长度(结果保留整数.参考数据:tan31°≈0.60,sin31°≈0.52,cos31°≈0.86).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使ABC≌△DEF,还需要添加一个条件是(  )

A. BCA=F B. BCEF C. A=EDF D. AD=CF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社设计了如图的调查问卷(单选).在随机调查了某市全部5 000名司机中的部分司机后,统计整理并制作了如下的统计图:

根据以上信息解答下列问题:
(1)补全条形统计图 , 并计算扇形统计图中m=
(2)该市支持选项B的司机大约有多少人?
(3)若要从该市支持选项B的司机中随机选择100名,给他们发放“请勿酒驾”的提醒标志,则支持该选项的司机小李被选中的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点的角平分线上的一点,点在边上.爱动脑筋的小刚经过仔细观察后,进行如下操作:在边上取一点,使得,这时他发现之间有一定的数量关系,请你写出的数量关系__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,F是菱形ABCD的边AD的中点,ACBF相交于EG,已知,则下列结论:其中正确的结论是  

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图矩形ABCD中,AD=1,CD= ,连接AC,将线段AC、AB分别绕点A顺时针旋转90°至AE、AF,线段AE与弧BF交于点G,连接CG,则图中阴影部分面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,在△ABC中,∠ACB=90°,BC=2,∠A=30°,点E,F分别是线段BC,AC的中点,连接EF.

(1)说明线段BE与AF的位置关系和数量关系;
(2)如图②,当△CEF绕点C顺时针旋转α(0°<α<90°)时,连接AF,BE,(1)中的结论是否仍然成立?如果成立,请证明;如果不成立,请说明理由;
(3)如图③,当△CEF绕点C顺时针旋转α(0°<α<180°)时,延长FC交AB于点D,如果AD=6﹣2 ,求旋转角α的度数.

查看答案和解析>>

同步练习册答案