精英家教网 > 初中数学 > 题目详情

【题目】2019年元旦期间,某超市打出促销广告,如下表所示:

一次性所购物品的原价

优惠办法

不超过200

没有优惠

超过200元,但不超过600

全部按九折优惠

超过600

其中600元仍按九折优惠,超过600元部分按8折优惠

1)小张一次性购买物品的原价为400元,则实际付款为 元;

2)小王购物时一次性付款580元,则所购物品的原价是多少元?

3)小赵和小李分别前往该超市购物,两人各自所购物品的原价之和为1200元,且小李所购物品的原价高于小赵,两人实际付款共1074元,则小赵和小李各自所购物品的原价分别是多少元?

【答案】1360;(2650;(3540,660.

【解析】

(1)因为小张一次性购买物品的原价为400元,应按九折付款,计算即可得出答案;

(2)因为小王购物时一次性付款580元,所以原价超过600元,按超过600元的优惠办法计算即可得出答案;

(3)因为两人各自所购物品的原价之和为1200元,且小李所购物品的原价高于小赵,所以小赵所购物品的原价少于600元,设小赵所购商品的价格是x元,分x200和x>200两种情况,列出方程解出即可.

解:

(1)400×0.9=360;

(2)600×0.9=540(元),580-540=40(元),40÷0.8=50(元);600+50=650(元)

(3)设小赵所购商品的价格是x元,

①若x200,x+540+0.8(1200-x-600)=1074 解得:x=270(舍去)

②若x>200,0.9x+540+0.8(1200-x-600)=1074 解得:x=540 1200-540=660(元);

综上所述,小赵和小李各自所购物品的原价分别是540元和660元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】我们知道,对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式.例如构造图1可以得到.请解答下列问题:

1)仿照图1,构造适当的图形得到的值;

2)写出图2中所表示的数学等式;

3)利用(2)中所得到的结论,解决下面的问题:己知,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作平行四边形ABDE,连接AD,EC.

(1)求证:△ADC≌△ECD;
(2)当点D在什么位置时,四边形ADCE是矩形,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt 中,∠A=90°,点O在AC上,⊙O切BC于点E,A在⊙O上,若AB=5,AC=12,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发.设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示yx之间的函数关系.根据题中所给信息解答以下问题:

(1)甲、乙两地之间的距离为____km;图中点C的实际意义为:______;慢车的速度为_______,快车的速度为______

(2)求线段BC所表示的yx之间的函数关系式,以及自变量x的取值范围;

(3)若在第一列快车与慢车相遇时,第二列快车从乙地出发驶往甲地,速度与第一列快车相同.请直接写出第二列快车出发多长时间,与慢车相距200km

(4)若第三列快车也从乙地出发驶往甲地,速度与第一列快车相同.如果第三列快车不能比慢车晚到,求第三列快车比慢车最多晚出发多少小时?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一条东西走向河的一侧有一村庄C,河边原有两个取水点AB,其中ABAC,由于某种原因,由CA的路现在已经不通,某村为方便村民取水决定在河边新建一个取水点HAHB在一条直线上),并新修一条路CH,测得CB3千米,CH2.4千米,HB1.8千米.

1)问CH是否为从村庄C到河边的最近路?(即问:CHAB是否垂直?)请通过计算加以说明;

2)求原来的路线AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】特例研究:如图,等边的边长为8,求等边的高.

经验提升:

如图,在中,,点P为射线BC上的任一点,过点P,垂足分别为DE,过点C,垂足为补全图形,判断线段PDPECF的数量关系,并说明理由.

综合应用:

如图,在平面直角坐标系中有两条直线,若线段BC上有一点M的距离是1,请运用中的结论求出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,山坡上有一棵树AB,树底部B点到山脚C点的距离BC为6米,山坡的坡角为30°. 小宁在山脚的平地F处测量这棵树的高,点C到测角仪EF的水平距离CF = 1米,从E处测得树顶部A的仰角为45°,树底部B的仰角为20°(结果精确到0.1).

(1)求树AB与测角仪EF的水平距离DF的长;
(2)求树AB的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36, ≈1.73 )

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小晗家客厅里装有一种三位单极开关,分别控制着A(楼梯)、B(客厅)、C(走廊)三盏电灯,在正常情况下,小晗按下任意一个开关均可打开对应的一盏电灯,既可三盏、两盏齐开,也可分别单盏开.因刚搬进新房不久,不熟悉情况.

(1)若小晗任意按下一个开关,正好楼梯灯亮的概率是多少?
(2)若任意按下一个开关后,再按下另两个开关中的一个,则正好客厅灯和走廊灯同时亮的概率是多少?请用树状图法或列表法加以说明.

查看答案和解析>>

同步练习册答案