精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作平行四边形ABDE,连接AD,EC.

(1)求证:△ADC≌△ECD;
(2)当点D在什么位置时,四边形ADCE是矩形,请说明理由.

【答案】
(1)证明:∵四边形ABDE为平行四边形,
∴AB=DE,∠ABD=∠AED,AE∥BD,
∴∠AED=∠CDE,
又∵AB=AC,
∴∠ABD=∠ACD,AC=DE,
∴∠ACD=∠AED,
∴∠ACD=∠CDE,
在△ADC和△ECD中,

∴△ADC≌△ECD;

(2)解:当点D在BC中点时,四边形ADCE是矩形;理由如下:
∵D为BC中点,
∴BD=CD,
又∵四边形ABDE为平行四边形,
∴AE∥BD,AE=BD,AB=DE,
∴AE∥CD,AE=CD,
∴四边形ADCE为平行四边形,
又∵AB=AC,
∴AC=DE,
∴平行四边形ADCE为矩形.

【解析】(1)由平行四边形的性质得出AB=DE,∠ABD=∠AED,AE∥BD,再由平行线的性质得出∠AED=∠CDE,又由等腰三角形的性质得出∠ABD=∠ACD,根据等量代换得出AC=DE,∠ACD=∠AED=∠CDE,再由全等三角形的判定SAS得证.
(2)当点D在BC中点时,四边形ADCE是矩形;理由如下:由D为BC中点得出BD=CD;由平行四边形的性质得出AE∥BD,AE=BD,AB=DE;由等量代换得出AE∥CD,AE=CD,根据平行四边形的判定得出四边形ADCE为平行四边形,再由对角线相等的平行四边形为矩形.
【考点精析】本题主要考查了等腰三角形的性质和平行四边形的判定与性质的相关知识点,需要掌握等腰三角形的两个底角相等(简称:等边对等角);若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,△AOB的顶点O在直线l上,且AO=AB.

(1)画出△AOB关于直线l成轴对称的图形△COD,且使点A的对称点为点C ;

(2)在(1)的条件下,ACBD的位置关系是________;

(3)在(1)、(2)的条件下,联结AD,如果∠ABD=2∠ADB,求∠AOC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知ABCD,AB//x轴,AB=6,点A的坐标为(1,-4),点D的坐标为(-3,4),点B在第四象限,点P是ABCD边上的一个动点.

(1)若点P在边BC上,PD=CD,求点P的坐标.
(2)若点P在边AB,AD上,点P关于坐标轴对称的点Q落在直线y=x-1上,求点P的坐标.
(3)若点P在边AB,AD,CD上,点G是AD与y轴的交点,如图2,过点P作y轴的平行线PM,过点G作x轴的平行线GM,它们相交于点M,将△PGM沿直线PG翻折,当点M的对应点落在坐标轴上时,求点P的坐标(直接写出答案).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用一个平面去截一个三棱柱,截面图形的边数最多的为边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校为了丰富学生课余生活,决定开设以下体育课外活动项目:A.版画  B.保龄球C.航模  D.园艺种植,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:

(1)这次被调查的学生共有   人;

(2)请你将条形统计图(2)补充完整;

(3)在平时的保龄球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加保龄球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲,乙,丙,丁四名跳高运动员赛前几次选拔赛成绩如表所示,根据表中的信息,如果要从中,选择一名成绩好又发挥稳定的运动员参加比赛,那么应选

平均数(cm)

185

180

185

180

方差

3.6

3.6

7.9

8.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】菱形具有而平行四边形不具有的性质是( )

A. 对角线互相平分 B. 两组对边分别相等 C. 对角线互相垂直 D. 相邻两角互补

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列事件是必然事件的是(  )

A.阴天一定会下雨

B.购买一张体育彩票,中奖

C.打开电视机,任选一个频道,屏幕上正在播放新闻联播

D.任意画一个三角形,其内角和是180°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列运算正确的是(
A.a3a2=a5
B.(a23=a5
C.a3+a3=a6
D.(a+b)2=a2+b2

查看答案和解析>>

同步练习册答案