精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中,点轴正半轴上,点轴正半轴上,为坐标原点,,过点于点:过点于点:过点于点:过点于点以此类推,点的坐标为__________.

【答案】

【解析】

根据等腰直角三角形的性质,分别求出A1A2A3的坐标,得出坐标的规律,根据AB两点坐标,利用待定系数法求出直线AB的解析式,把A2019的横坐标代入可得M2019的纵坐标.即可得答案.

OM1ABOA=OB=1,∠AOB=90°

BM1=M1A=OM1

M1A1OA

M1A1//OB

OA1=A1A=OA=

A1的坐标为(0),

同理:A2的坐标为(0)即(1-0),

A3的坐标为(0),即(1-0

A2019的坐标为(1-0),

设直线AB的解析式为y=kx+b

A10),B01),

解得:

∴直线AB的解析式为:y=-x+1

x=1-时,y=-(1-)+1=

M2019的坐标为(1-.

故答案为:(1-

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知正方形和正六边形 边长均为1,如图所示,把正方形放置在正六边形外,使边与边重合,按下列步骤操作:将正方形在正六边形外绕点逆时针旋转,使边与边重合,完成第一次旋转再绕点逆时针旋转,使边与边重合,完成第二次旋转;此时点经过路径的长为_________:若按此方式旋转,共完成六次,在这个过程中,之间距离的最大值是____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等边中,D为边AC的延长线上一点(),平移线段BC,使点C移动到点D,得到线段EDMED的中点,过点MED的垂线,交BC于点F,交AC于点G

1)依题意补全图形;

2)求证:

3)连接DF并延长交AB于点H,用等式表示线段AHCG的数量关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知边长为4的正方形ABCDEBC边上一动点(BC不重合),连结AE,作EF⊥AE∠BCD的外角平分线于F,设BEx△ECF的面积为y,下列图象中,能表示yx的函数关系的图象大致是( )

A. B.

C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某种蔬菜的销售单价y1与销售月份x之间的关系如图1所示,成本y2与销售月份x之间的关系如图2所示(图1的图象是线段,图2的图象是抛物线)

(1)已知6月份这种蔬菜的成本最低,此时出售每千克的收益是多少元?(收益=售价﹣成本)

(2)哪个月出售这种蔬菜,每千克的收益最大?简单说明理由.

(3)已知市场部销售该种蔬菜4、5两个月的总收益为22万元,且5月份的销售量比4月份的销售量多2万千克,求4、5两个月的销售量分别是多少万千克

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与探究

如图,抛物线轴交于两点,与轴交于点.

1)求抛物线解析式:

2)抛物线对称轴上存在一点,连接,当值最大时,求点H坐标:

3)若抛物线上存在一点,当时,求点坐标:

4)若点M平分线上的一点,点是平面内一点,若以为顶点的四边形是矩形,请直接写出点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数ykx+b的图象与坐标轴分别交于AB两点,与反比例函数y的图象在第一象限的交点为CCDx轴于D,若OB3OD6AOB的面积为3

1)求一次函数与反比例函数的表达式;

2)当x0时,比较kx+b的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在一笔直的海岸线上有两个观测站,,从测得船

在北偏东的方向,从测得船在北偏东的方向,求船离海岸线的距离(的长)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,ABBC3,在BC边上取两点EF(点E在点F的左边),以EF为边所作等边△PEF,顶点P恰好在AD上,直线PEPF分别交直线AC于点GH

1)求△PEF的边长;

2)若△PEF的边EF在线段CB上移动,试猜想:PHBE有何数量关系?并证明你猜想的结论;

3)若△PEF的边EF在射线CB上移动(分别如图和图所示,CF1P不与A重合),(2)中的结论还成立吗?若不成立,直接写出你发现的新结论.

查看答案和解析>>

同步练习册答案