【题目】在某次足球训练中,一队员在距离球门12米处挑射,正好射中了2.4米高的球门横梁.若足球运行的路线是抛物线y=ax2+bx+c(如图).现有四个结论:①a﹣b>0;②a<﹣;③﹣<a<0;④0<b<﹣12a.其中正确的结论是( )
A. ①③ B. ①④ C. ②③ D. ②④
【答案】D
【解析】
根据二次函数的性质得出a,b的符号,即可得出①正确性,再利用图上点的坐标得出a,b关系,即可得出答案.
∵a<0,ab异号,b>0,
∴a-b<0,故此选项①错误;
首先可以确定抛物线过点(12,0),(0,2.4)代入得:
144a+12b+c=0,c=2.4
得,b=-12a-,而b=-12a->0,
解得:a<-,故此选项②正确;
∴综上所述,故此选项③错误;
另外,抛物线的对称轴的横坐标小于6 即-<6,
a<0 则b<-12a 另外,
由图象可以看出ax2+bx+c=0有两个根,且满足x1+x2>0,
则->0,而a<0,所以b>0,
因此 0<b<-12a,故此选项④正确;
故选:D.
科目:初中数学 来源: 题型:
【题目】在△ABC 中,D 是 BC 边的中点,E、F 分别在 AD 及其延长线上,CE∥BF,连接BE、CF.
(1)求证:△BDF ≌△CDE;
(2)若 DE =BC,试判断四边形 BFCE 是怎样的四边形,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)已知二次函数的图象经过点(﹣2,8)和(﹣1,5),求这个二次函数的表达式;
(2)已知抛物线的顶点为(﹣1,﹣3),与y轴的交点为(0,﹣5),求这个抛物线相应的函数表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线y=x与双曲线y=交于A、B两点,且点A的横坐标为.
(1)求k的值;
(2)若双曲线y=上点C的纵坐标为3,求△AOC的面积;
(3)在坐标轴上有一点M,在直线AB上有一点P,在双曲线y=上有一点N,若以O、M、P、N为顶点的四边形是有一组对角为60°的菱形,请写出所有满足条件的点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系中,点A、B、C在x轴上,点D、E在y轴上,OA=OD=2,OC=OE=4,B为线段OA的中点,直线AD与经过B、E、C三点的抛物线交于F、G两点,与其对称轴交于M,点P为线段FG上一个动点(与F、G不重合),PQ∥y轴与抛物线交于点Q.
(1)求经过B、E、C三点的抛物线的解析式;
(2)判断△BDC的形状,并给出证明;当P在什么位置时,以P、O、C为顶点的三角形是等腰三角形,并求出此时点P的坐标;
(3)若抛物线的顶点为N,连接QN,探究四边形PMNQ的形状:①能否成为菱形;②能否成为等腰梯形?若能,请直接写出点P的坐标;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了争创全国文明卫生城市,优化城市环境,节约能源,某市公交公司决定购买一批共10台全新的混合动力公交车,现有A、B两种型号,其中每台的价格,年省油量如下表:
A | B | |
价格(万元/台) | a | b |
节省的油量(万升/年) | 2.4 | 2 |
经调查,购买一台A型车比购买一台B型车多10万元,购买3台A型车比购买4台B型车少30万元.
(1)请求出a和b的值;
(2)若购买这批混合动力公交车(两种车型都要有)每年能节省的油量不低于21.6万升,请问有几种购车方案?请写出解答过程.
(3)求(2)中最省钱的购车方案及所需的购车款.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰△ABC中,AB=AC,∠BAC=50°.∠BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEF的度数是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如下图,在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC:y=x交于点C.
(1)若直线AB解析式为.
①求点C的坐标;
②根据图象,求关于x的不等式0<-x+10<x的解集;
(2)如下图,作∠AOC的平分线ON,若AB⊥ON,垂足为E,ΔOAC的面积为9,且OA=6,P、Q分别为线段OA、OE上的动点,连接AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值:若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,在边长为1的小正方形组成的网格中,点.
(1)在网格中正确画出平面直角坐标系;
(2)在平面直角坐标系中作出关于轴对称的图形,并将点先向右平移4个单位长度再向下平移1个单位长度得到点,写出点的坐标;
(3)顺次连接点得到,是等腰直角三角形吗?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com