【题目】如图,平面直角坐标系中,点A、B、C在x轴上,点D、E在y轴上,OA=OD=2,OC=OE=4,B为线段OA的中点,直线AD与经过B、E、C三点的抛物线交于F、G两点,与其对称轴交于M,点P为线段FG上一个动点(与F、G不重合),PQ∥y轴与抛物线交于点Q.
(1)求经过B、E、C三点的抛物线的解析式;
(2)判断△BDC的形状,并给出证明;当P在什么位置时,以P、O、C为顶点的三角形是等腰三角形,并求出此时点P的坐标;
(3)若抛物线的顶点为N,连接QN,探究四边形PMNQ的形状:①能否成为菱形;②能否成为等腰梯形?若能,请直接写出点P的坐标;若不能,请说明理由.
【答案】(1)y=﹣x2+3x+4;(2)△BDC是直角三角形,证明见解析;△POC是等腰三角形时,点P坐标是(﹣1+,1+)或(2,4);(3)①不能成为菱形,理由见解析;②能成为等腰梯形,点P的坐标是(2.5,4.5).
【解析】
(1)利用待定系数法列方程组求二次函数的解析式.(2)利用勾股定理的逆定理,判断直角三角形.(3)分别设出P,Q点坐标,按照菱形的条件,等腰梯形的条件,分别求P点坐标,判断是否存在.
(1)B(﹣1,0)E(0,4)C(4,0)设解析式是y=ax2+bx+c,
可得,
解得,
∴y=﹣x2+3x+4;
(2)△BDC是直角三角形,
∵BD2=BO2+DO2=5,DC2=DO2+CO2=20,BC2=(BO+CO)2=25
∴BD2+DC2=BC2,
∴△BDC是直角三角形.
点A坐标是(﹣2,0),点D坐标是(0,2),
设直线AD的解析式是y=kx+b,则,
解得:,
则直线AD的解析式是y=x+2,
设点P坐标是(x,x+2)
当OP=OC时x2+(x+2)2=16,
解得:x=﹣1±(x=﹣1-(不符合,舍去)此时点P(﹣1+,1+)
当PC=OC时(x+2)2+(4﹣x)2=16,方程无解;
当PO=PC时,点P在OC的中垂线上,
∴点P横坐标是2,得点P坐标是(2,4);
∴当△POC是等腰三角形时,点P坐标是(﹣1+,1+)或(2,4);
(3)点M坐标是(,),点N坐标是(,),∴MN=,
设点P为(x,x+2),Q(x,﹣x2+3x+4),则PQ=﹣x2+2x+2
①若PQNM是菱形,则PQ=MN,可得x1=0.5,x2=1.5
当x2=1.5时,点P与点M重合;当x1=0.5时,可求得PM=所以菱形不存在.
②能成为等腰梯形,作QH⊥MN于点H,作PJ⊥MN于点J,则NH=MJ,
则﹣(﹣x2+3x+4)=x+2﹣,
解得:x=2.5,
此时点P的坐标是(2.5,4.5).
科目:初中数学 来源: 题型:
【题目】如图,点P在⊙O的直径AB的延长线上,PC为⊙O的切线,点C为切点,连接AC,过点A作PC的垂线,点D为垂足,AD交⊙O于点E.
(1)如图1,求证:∠DAC=∠PAC;
(2)如图2,点F(与点C位于直径AB两侧)在⊙O上,,连接EF,过点F作AD的平行线交PC于点G,求证:FG=DE+DG;
(3)在(2)的条件下,如图3,若AE=DG,PO=5,求EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=(x﹣1)2﹣4,AB为半圆的直径,则这个“果圆”被y轴截得的弦CD的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与轴、轴分别相交于点C、B,与直线相交于点A.
(1)求A点坐标;
(2)如果在y轴上存在一点P,使△OAP是以OA为底边的等腰三角形,求P点坐标;
(3)在直线上是否存在点Q,使△OAQ的面积等于6?若存在,请求出Q点的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在学校开展的数学活动课上,小明和小刚制作了一个正三楼锥(质量均匀,四个面完全相同),并在各个面上分别标记数字1,2,3,4,游戏规则如下每人投掷三棱锥两次,并记录底面的数字,如果两次所掷数字的和为单数,那么算小明赢,如果两欢所掷数字的和为偶数,那么算小明赢;
(1)请用列表或者面树状围的方法表示上述游戏中的所有可能结果.
(2)请分别隶出小明和小刚能赢的概率,并判新游戏的公平性.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在等腰和等腰中,,,连接交于点.
(1)如图1,若:
①与的数量关系为 ;
②的度数为 ;
图1
(2)如图2,若:
图2
①判断与之间存在怎样的数量关系?并说明理由;
②求的度数;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC 中,∠C=90°,∠A=34°,D,E 分别为 AB,AC 上一点,将△BCD,△ADE 沿 CD,DE 翻折,点 A,B 恰好重合于点 P 处,则∠ACP=_______________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠AOB=45,∠AOB内有一定点P,且OP=10.在OA上有一动点Q,OB上有一动点R.若ΔPQR周长最小,则最小周长是()
A. 10 B. C. 20 D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠C=90°,BC=5.
⑴ 利用直尺和圆规在AB边上求作一点P,使得∠APC+∠BCP=90°,并说明理由;(不写作法,保留作图痕迹)
⑵ 在⑴的条件下,试判断∠PCB与∠A之间的数量关系,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com