【题目】如下图,在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC:y=x交于点C.
(1)若直线AB解析式为.
①求点C的坐标;
②根据图象,求关于x的不等式0<-x+10<x的解集;
(2)如下图,作∠AOC的平分线ON,若AB⊥ON,垂足为E,ΔOAC的面积为9,且OA=6,P、Q分别为线段OA、OE上的动点,连接AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值:若不存在,说明理由.
【答案】(1)①C(4,4) ,②4<x<;(2) AQ+PQ存在最小值,最小值为3.
【解析】
(1)①根据直线AB和直线OC相交于点C,将两个函数解析式联立,解方程组即为C(4,4);②先求出A点坐标,观察图像即可得出不等式的解集为4<x<;
(2)首先在OC上截取OM=OP,连接MQ,通过SAS定理判定△POQ≌△MOQ,从而得出PQ=MQ,进行等式变换AQ+PQ=AQ+MQ,,即可判断当A、Q、M在同一直线上,且AM⊥0C时,AQ+MQ最小,即AQ+PQ存在最小值;再由ASA定理判定△AEO≌ΔCEO,最后由OC=OA=6,ΔOAC的面积为9,得出AM=3.
(1)①由題意,
解得:
所以C(4,4)
②把y=0代入,
解得
所以A点坐标为(,0),
∵C(4,4),
所以观察图像可得:不等式的解集为4<x<;
(2)由题意,在OC上截取OM=OP,连接MQ,
∵ON平分∠AOC,
∴∠AOQ=∠COQ,
又OQ=OQ.
∴△POQ≌△MOQ(SAS),
∴PQ=MQ,
∴AQ+PQ=AQ+MQ,
当A、Q、M在同一直线上,且AM⊥OC时,AQ+MQ最小,
即AQ+PQ存在最小值
∴AB⊥ON,所以∠AEO=∠CEO,
∴△AEO≌ΔCEO(ASA),
∴OC=OA=6,
∵ΔOAC的面积为9,
∴OC·AM=9,
∴AM=3,
:AQ+PQ存在最小值,最小值为3.
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定四边形ABCD为平行四边形的是( )
A. AB∥CD,AD∥BC B. OA=OC,OB=OD C. AD=BC,AB∥CD D. AB=CD,AD=BC
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义一种新运算:a⊕b=
(1)请写出函数y=x⊕1的解析式,并在所给的平面直角坐标系中画出该函数图象;
(2)观察(1)中图象,探究得到y的最小值是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)(操作发现)
如图 1,在边长为 1 个单位长度的小正方形组成的网格中,ABC 的三个顶点均在格点上.现将ABC 绕点 A 按顺时针方向旋转 90°,点 B 的对应点为 B′,点 C 的对应点为 C′, 连接 BB′,如图所示则∠AB′B= .
(2)(解决问题)
如图 2,在等边ABC 内有一点 P,且 PA=2,PB= ,PC=1,如果将△BPC 绕点 B 顺时针旋转 60°得出△ABP′,求∠BPC 的度数和 PP′的长;
(3)(灵活运用)
如图 3,将(2)题中“在等边ABC 内有一点 P 改为“在等腰直角三角形 ABC 内有一点P”,且 BA=BC,PA=6,BP=4,PC=2,求∠BPC 的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB⊥BC于点B,CD⊥BC于点C,AB=4,CD=6,BC=14,P为BC边上一点,试问BP为何值时,以A,B,P为顶点的三角形与以P,C,D为顶点的三角形相似?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,
(1)求证:四边形ADCE为矩形;
(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】研究表明,温度对生猪词养有一定的影响.下图是某生猪饲养场查阅的下周天气预报情况,根据图中信息回答下列问题:
(1)周二的最高气温与最低气温分别是多少?
(2)图中点A表示的实际意义是什么?
(3)当一天内的温差超过12C时,生猪可能出现生理异常.为了预防生猪生理异常,养殖场需要在哪几天进行人工调节温度?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com