精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,∠ACB=90°,M、N分别是AB、AC的中点,延长BC至点D,使CD= BD,连接DM、DN、MN.若AB=6,则DN=

【答案】3
【解析】解:连接CM, ∵M、N分别是AB、AC的中点,
∴NM= CB,MN∥BC,又CD= BD,
∴MN=CD,又MN∥BC,
∴四边形DCMN是平行四边形,
∴DN=CM,
∵∠ACB=90°,M是AB的中点,
∴CM= AB=3,
∴DN=3,
故答案为:3.

连接CM,根据三角形中位线定理得到NM= CB,MN∥BC,证明四边形DCMN是平行四边形,得到DN=CM,根据直角三角形的性质得到CM= AB=3,等量代换即可.本题考查的是三角形的中位线定理、直角三角形的性质、平行四边形的判定和性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,已知正方形OABC的边长为2,顶点A、C分别在x、y轴的正半轴上,M是BC的中点.P(0,m)是线段OC上一动点(C点除外),直线PM交AB的延长线于点D.

(1)求点D的坐标(用含m的代数式表示);
(2)当△APD是等腰三角形时,求m的值;
(3)设过P、M、B三点的抛物线与x轴正半轴交于点E,过点O作直线ME的垂线,垂足为H(如图2),当点P从点O向点C运动时,点H也随之运动.请直接写出点H所经过的路径长.(不必写解答过程)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小李用围棋子排成下列一组有规律的图案,其中第1个图案有1枚棋子,第2个图案有3枚棋子,第3个图案有4枚棋子,第4个图案有6枚棋子,…,那么第9个图案的棋子数是枚.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在公园的O处附近有E,F,G,H四棵树,位置如图所示(图中小正方形的边长均相等)现计划修建一座以O为圆心,OA为半径的圆形水池,要求池中不留树木,则E,F,G,H四棵树中需要被移除的为(  )
A.E,F,G
B.F,G,H
C.G,H,E
D.H,E,F

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=x2+(2m+1)x+m(m﹣3)(m为常数,﹣1≤m≤4).A(﹣m﹣1,y1),B( ,y2),C(﹣m,y3)是该抛物线上不同的三点,现将抛物线的对称轴绕坐标原点O逆时针旋转90°得到直线a,过抛物线顶点P作PH⊥a于H.

(1)用含m的代数式表示抛物线的顶点坐标;
(2)若无论m取何值,抛物线与直线y=x﹣km(k为常数)有且仅有一个公共点,求k的值;
(3)当1<PH≤6时,试比较y1 , y2 , y3之间的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校学生利用双休时间去距学校10km的炎帝故里参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车沿相同路线出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度和汽车的速度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:
(1)(π﹣5)0+ ﹣|﹣3|
(2)3a+(1+

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知点A(6,0),点B(0,6),动点C在以半径为3的⊙O上,连接OC,过O点作OD⊥OC,OD与⊙O相交于点D(其中点C、O、D按逆时针方向排列),连接AB.
(1)当OC∥AB时,∠BOC的度数为
(2)连接AC,BC,当点C在⊙O上运动到什么位置时,△ABC的面积最大?并求出△ABC的面积的最大值;
(3)连接AD,当OC∥AD时,①求出点C的坐标;②直线BC是否为⊙O的切线?请作出判断,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC和△DEC的面积相等,点E在BC边上,DE∥AB交AC于点F,AB=12,EF=9,则DF的长是多少?

查看答案和解析>>

同步练习册答案