精英家教网 > 初中数学 > 题目详情

【题目】已知,如图,正方形ABCD的对角线ACBD相交于点O,正方形A′B′C′D′的顶点A′与点O重合,A′B′BC于点EA′D′CD于点F

1)求证:OE=OF

2)若正方形ABCD的对角线长为4,求两个正方形重叠部分的面积为__

【答案】2

【解析】分析:(1)由正方形的性质可以得出BOE≌△COF,由全等三角形的性质就可以得出OE=OF

(2)由全等可以得出SBOE=SCOF,就可以得出S四边形OECF=SBOCSBOC的面积就可以得出结论.

详解:1)证明:∵正方形ABCD的对角线ACBD交于点O

∴∠BOC=90°OBC=OCD=OCF=45°OB=OC

∵正方形A'B'C'D'A'B'BC于点EA'D'CD于点F

∴∠EOF=90°

∵∠BOE=EOF﹣EOC=90°﹣EOC

COF=BOC﹣EOC=90°﹣EOC

∴∠BOE=COF

在△OBE和△OCF中,

BOE=COFOB=OCOBC=OCF

∴△BOE≌△COFASA).

OE=OF

2)解:∵△BOE≌△COF

SBOE=SCOF

SEOC+SCOF=SEOC+SBOE

S四边形OECF=SBOC

SBOC=2

∴两个正方形重叠部分的面积为2

故答案为:2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为更好宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社设计了如图1的调查问卷(单选),在随机调查了本市10000名司机中的部分司机后,统计整理并制作了如图2所示的统计图:

根据以上的信息解答下列问题:
(1)补全条形统计图,并计算扇形统计图中a=
(2)该市支持选项C的司机大约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】去冬今春,我市部分地区遭受了罕见的旱灾,旱灾无情人有情.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.

1)求饮用水和蔬菜各有多少件?

2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;

3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数学阅读:

古希腊数学家海伦曾提出一个利用三角形三边之长求面积的公式:若一个三角形的三边长分别为abc,则这个三角形的面积为,其中.这个公式称为海伦公式

数学应用:

如图1,在ABC中,已知AB=9AC=8BC=7.

1)请运用海伦公式求ABC的面积;

2)设AB边上的高为AC边上的高,求的值;

3)如图2ADBEABC的两条角平分线,它们的交点为I,求ABI的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形A1B1B2C1 , A2B2B3C2 , A3B3B4C3 , …,AnBnBn+1Cn , 按如图所示放置,使点A1、A2、A3、A4、An在射线OA上,点B1、B2、B3、B4、Bn在射线OB上.若∠AOB=45°,OB1=1,图中阴影部分三角形的面积由小到大依次记作S1 , S2 , S3 , …,Sn , 则Sn=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,将两条等宽的纸条重叠在一起,得到四边形,若,则___.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,E点为DF上的点,BAC上的点,∠1=∠2∠C=∠D

试说明:AC∥DF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD中,点E、F在对角线BD上,且BE=DF.求证:

(1)ABE≌△CDF;

(2)四边形AECF是平行四边形.

查看答案和解析>>

同步练习册答案