精英家教网 > 初中数学 > 题目详情

【题目】张师傅驾车运送荔枝到某地出售,汽车出发前油箱有油50升,行驶若干小时后,图中在加油站加油若干升,油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示.
(1)汽车行驶小时后加油,中途加油升;
(2)求加油前油箱剩余油量y与行驶时间t的函数关系式;
(3)已知加油前、后汽车都以70千米/小时匀速行驶,如果加油站距目的地210千米,要到达目的地,问油箱中的油是否够用?请说明理由.

【答案】
(1)3;31
(2)解:设y与t的函数关系式是y=kt+b(k≠0),根据题意,将(0,50)(3,14)代入

得:

因此,加油前油箱剩油量y与行驶时间t的函数关系式是:y=﹣12t+50.


(3)解:由图可知汽车每小时用油(50﹣14)÷3=12(升),

所以汽车要准备油210÷70×12=36(升),因为45升>36升,所以油箱中的油够用.


【解析】(1)由题中图像即可看出,加油的时间和加油量;(2)设函关系式y=kx+b,将(0,50)(3,14)代入即可求解;(3)由路程和速度算出时间,再求出每小时的用油量,判断油是否够用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】一个不透明的口袋中装有4个分别标有数1,2,3,4的小球,它们的形状、大小完全相同,小红先从口袋里随机摸出一个小球记下数为x,小颖在剩下的3个球中随机摸出一个小球记下数为y,这样确定了点P的坐标(x,y).
(1)小红摸出标有数3的小球的概率是
(2)请你用列表法或画树状图法求点P(x,y)在函数y=﹣x+5图象上的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.
(1)求证:△ADE≌△ABF;
(2)若BC=8,DE=6,求△AEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,以△ABC的边AB、AC为边分别向外作等腰直角△ABD和等腰直角△ACE,连接CD、BE、DE
(1)证明:△ADC≌△ABE;
(2)试判断△ABC与△ADE面积之间的关系,并说明理由;
(3)园林小路,曲径通幽,如图2所示,小路由白色的正方形大理石和黑色的三角形大理石铺成,已知中间的所有正方形的面积之和是a平方米,内圈的所有三角形的面积之和是b平方米,这条小路一共占地平方米.(不用写过程)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC=10,点D是边BC上一动点(不与B,C重合),∠ADE=∠B=α,DE交AC于点E,且cosα= .下列结论:①△ADE∽△ACD;②当BD=6时,△ABD与△DCE全等;③△DCE为直角三角形时,BD为8;④0<CE≤6.4.其中正确的结论是 . (把你认为正确结论的序号都填上)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,点F在边AC上,并且CF=1,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】爱好思考的小茜在探究两条直线的位置关系查阅资料时,发现了“中垂三角形”,即两条中线互相垂直的三角形称为“中垂三角形”.如图(1)、图(2)、图(3)中,AM、BN是△ABC的中线,AM⊥BN于点P,像△ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.
(1)【特例探究】
如图1,当tan∠PAB=1,c=4 时,a= , b=
如图2,当∠PAB=30°,c=2时,a= , b=

(2)【归纳证明】
请你观察(1)中的计算结果,猜想a2、b2、c2三者之间的关系,用等式表示出来,并利用图3证明你的结论.

(3)【拓展证明】
如图4,ABCD中,E、F分别是AD、BC的三等分点,且AD=3AE,BC=3BF,连接AF、BE、CE,且BE⊥CE于E,AF与BE相交点G,AD=3 ,AB=3,求AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).
(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是
(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.
(3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b<0;②c>0;③a+c<b;④b2﹣4ac>0,其中正确的个数是(  )

A.1
B.2
C.3
D.4

查看答案和解析>>

同步练习册答案