【题目】如图,正方形纸片ABCD沿直线BE折叠,点C恰好落在点G处,连接BG并延长,交CD于点H,延长EG交AD于点F,连接FH.若AF=FD=6cm,则FH的长为_____cm.
【答案】3
【解析】
连接BF,先证明Rt△ABF≌Rt△GBF,得到∠AFB=∠GFB,FA=FG,再证明Rt△FGH≌Rt△FDH,得到∠GFH=∠DFH,于是∠BFH=∠BFG+∠GFH=×180°=90°,根据△ABF∽△DFH,得,从而可求出FH.
解:如图,连接BF.
∵四边形ABCD是正方形,
∴∠A=∠C=90°,AB=BC=AF+FD=12cm.
由折叠可知,BG=BC=12cm,∠BGE=∠BCE=90°.
∴AB=GB.
在Rt△ABF和Rt△GBF中,
,
∴Rt△ABF≌Rt△GBF(HL).
∴∠AFB=∠GFB,FA=FG,
又∵AF=FD,
∴FG=FD.
同理可证Rt△FGH≌Rt△FDH,
∴∠GFH=∠DFH,
∴∠BFH=∠BFG+∠GFH=180°=90°,
∴∠AFB+∠DFH=90°.
又∵∠AFB+∠ABF=90°,
∴∠ABF=∠DFH.
又∵∠A=∠D=90°,
∴△ABF∽△DFH,
∴,
在Rt△ABF中,由勾股定理,得BF=,
∴,
∴FH=.
故答案为:3.
科目:初中数学 来源: 题型:
【题目】如图,直线y=-x+3与x轴,y轴分别交于B,C两点,抛物线y=-x2+bx+c经过B,C两点,点A是抛物线与x轴的另一个交点.
(1)求此抛物线的函数解析式;
(2)在抛物线上是否存在点P,使S△PAB=2S△CAB,若存在,求出P点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个不透明的盒子中装有三张卡片,三张卡片的正面分别标有数字,,,这些卡片除数字外都相同,将卡片搅匀.
(1)从盒子中任意抽取一张卡片,恰好抽到标有奇数卡片的概率是_________.
(2)先从盒子中任意抽取一张卡片,再从余下的两张卡片中任意抽取一张卡片,求抽取的两张卡片标有数字之和大于的概率(请用画树状图或列表等方法求解).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,线段AC是⊙O的直径,过A点作直线BF交⊙O于A、B两点,过A点作∠FAC的角平分线交⊙O于D,过D作AF的垂线交AF于E.
(1)证明DE是⊙O的切线;
(2)证明AD2=2AEOA;
(3)若⊙O的直径为10,DE+AE=4,求AB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,直线与轴、轴分别交于点,,抛物线经过点,将点向右平移5个单位长度,得到点.
(1)求点的坐标;
(2)求抛物线的对称轴;
(3)若抛物线与线段恰有一个公共点,结合函数图象,求的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】舍利生生塔位于晋祠南瑞,建于隋开皇年间,宋代重修,清乾隆十六年(1751年)重建.七屋八角,琉璃瓦顶,远远望去,高耸的古塔,映衬着蓝天白云,甚是壮观.原塔内每层均有佛像,开4门8窗,凭窗远眺,晋祠内外美景可一览无余.如果在夕阳西下时欣赏宝塔,还会出现——天云锦、满塔光辉的壮丽景观,被誉为“宝塔披霞”.某数学“综合与实践”小组的同学把“测量舍利生生塔高”作为一项课题活动,他们制定了测量方案,并利用课余时间完成了实地测量,测量结果如表:
课题 | 测量舍利生生塔高 | |||
测量示意图 | 说明:某同学在地面上选择点C,使用手持测角仪,测得此时楼顶A的仰角∠AHE=α,沿CB方向前进到点D,测量出C,D之间的距离CD=xm,在点D使用手持测角仪,测得此时楼顶A的仰角∠AFE=β | |||
测量数据 | α的度数 | β的度数 | CD的长度 | 该同学眼睛离地面的距离HC |
24° | 37° | 32m | 1.76m | |
… | … |
(1)请帮助该小组的同学根据上表中的测量数据,求塔高AB.(结果精确到1m;参考数据:sin24°≈0.41,cos24°≈0.91,tan24°≈0.45,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
(2)该小组要写出一份完整的课题活动报告,除上表中的项目外,你认为还需要补充哪些项目?(写出一个即可)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,以点A为圆心AB长为半径画弧交AD于点F,再分别以点B,F为圆心,大于BF的长度为半径画弧,两弧交于点P;连接AP并延长交BC于点E,连接EF.
(1)求证:四边形ABEF是菱形;
(2)若∠C=60°,AE=4,求菱形ABEF的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明经过市场调查,整理出他妈妈商店里一种商品在第天的销售量的相关信息如下表:
时间第(天) | ||
售价(元/件) | 50 | |
每天销量(件) |
已知该商品的进价为每件20元,设销售该商品的每天利润为元.
(1)求出与的函数关系式;
(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?
(3)该商品在销售过程中,共有多少天每天销售利润不低于2400元?请直接写出结果.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com