精英家教网 > 初中数学 > 题目详情
6.已知二次函数y=ax2+bx+c的图象如图所示(虚线部分是对称轴);则下列结论:
①abc>0;②b=2a;③4ac-b2<0;④a+b+c<0;⑤4a+c<2b;⑥8a+c>0.
其中正确的个数是(  )
A.5B.4C.3D.2

分析 根据抛物线与x轴的交点情况,抛物线的开口方向,对称轴及与y轴的交点,当x=-2或x=1时的函数值,逐一判断.

解答 解:①抛物线开口向上,得:a>0;
抛物线的对称轴为x=-$\frac{b}{2a}$=-1,b=2a,故b>0;
抛物线交y轴于负半轴,得:c<0;
所以abc<0;
故①错误,②正确;
③抛物线与x轴有两个不同的交点,则△=b2-4ac>0,故4ac-b2<0,故③正确;
④当x=1时,y>0,即a+b+c>0,故④错误;
⑤当x=-2时,y<0,即4a-2b+c<0,故4a+c<2b,则⑤正确;
⑥根据②可将抛物线的解析式化为:y=ax2+2ax+c(a≠0);
由函数的图象知:当x=2时,y>0;即4a+4a+c=8a+c>0,故⑥正确;
故正确的结论有4个.
故选:B.

点评 此题主要考查了图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

16.若-2是一元二次方程x2-2x-a=0的一个根,则a的值为8.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,等边△ABC中,D是AB边上的动点,以CD为一边向上作等边△EDC,连接AE.(1)求证:AE∥BC.
(2)当D点运动到什么位置时,EC⊥BC?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.某公园一喷水池喷水时水流的路线呈抛物线(如图).若喷水时水流的高度y(m)与水平距离x(m)之间的函数关系式是y=-x2+2x+1.25,则水池在喷水过程中水流的最大高度为(  )
A.1.25米B.2.25米C.2.5米D.3米

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.为了美观,在加工太阳镜时将下半部分轮廓制作成抛物线的形状如图.在平曲直角坐标系中两条抛物线关于y轴对称,AE∥x轴.AB=4cm.最低点C在x轴上,CH=1cm,BD=2cm,求右轮廓线DFE所在抛物线的函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,在Rt△ABC中,∠B=90°,AB=6cm,BC=12cm,点P从点A出发,沿AB边向点B以1cm/s的速度移动,同时点Q从点B出发沿BC边向点C以2cm/s的速度移动,如果P,Q两点同时出发,分别到达B,C两点后就停止移动.
(1)设运动开始后第ts时,四边形APQC的面积是Scm2,写出S与t的函数关系式,并指出自变量t的取值范围;
(2)t为何值时,S最小?最小值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,四边形ABCD是矩形,直线l垂直平分线段AC,垂足为O,直线l分别与线段AD、CB的延长线交于点E、F.试判定四边形AFCE的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.把命题“两条平行线被第三条直线所截,同位角相等”写成“如果…,那么…”的形式是如果两条平行线被第三条直线所截,那么同位角相等.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.计算
(1)(-8)-47+18-(-27)
(2)(-3)×(-9)-8×(-5)
(3)$\frac{9}{2}$×(-$\frac{8}{3}$+2-$\frac{8}{9}$)-|-1|
(4)($\frac{2}{3}$-$\frac{1}{6}$-$\frac{5}{8}$+$\frac{1}{12}$)×(-24)
(5)12÷($\frac{1}{6}$-$\frac{1}{2}$)+2×$\frac{1}{4}$-|$\frac{1}{2}$-3|

查看答案和解析>>

同步练习册答案