【题目】感知:如图1,在中,D、E分别是AB、AC两边的中点,延长DE至点F,使,连结易知≌.
探究:如图2,AD是的中线,BE交AC于点E,交AD于点F,且,求证:.
应用:如图3,在中,,,,DE是的中位线过点D、E作,分别交边BC于点F、G,过点A作,分别与FD、GE的延长线交于点M、N,则四边形MFGN周长C的取值范围是______.
【答案】(1)探究:证明见详解 (2)应用:
【解析】
(1)探究:如图,延长AD至点M,使,连接MC,根据题意有≌,得到,,然后因为,,所以,即.
(2)应用:由题意知四边形MFGN是平行四边形,因为是的中位线,所以MN=FG=DE,故当NG⊥BC是四边形MFGN周长C的值最小,当NG与AC重合时四边形MFGN周长C最大,分别求出最大最小值即可.
(1)探究:如图2,延长AD至点M,使,连接MC,
在和中,,
≌;
,,
,
,
,
,
,
;
(2)应用:解:如图3,
,,
四边形MFGN是平行四边形,
,,
是的中位线,
,,
,
四边形MFGN周长,
时,MF最短,
即:四边形MFGN的周长最小,
过点A作于H,
∴,
在中,,,
,,
,
∴,
四边形MFGN的周长C最小为,
四边形MFGN的周长C最大为,如图
故答案为:.
科目:初中数学 来源: 题型:
【题目】如图钢架中,∠A=,焊上等长的钢条P1P2, P2P3, P3P4, P4P5……来加固钢架.著P1A= P1P2,且恰好用了4根钢条,则α的取值范圈是( )
A.15°≤ a <18°
B.15°< a ≤18°
C.18°≤ a <22.5°
D.18° < a ≤ 22.5°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂直为D,若OB=2OA=3OD=6.
(1)求一次函数与反比例函数的解析式;
(2)求两函数图象的另一个交点坐标;
(3)直接写出不等式;kx+b≤的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC
①求证:△ABE≌△CBD;
②若∠CAE=30°,求∠BDC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为发展学生的核心素养,培养学生的综合能力,某学校计划开设四门选修课:乐器、舞蹈、绘画、书法,学校采取随机抽样的方法进行问卷调查每个被调查的学生必须选择而且只能选择其中一门对调查结果进行整理,绘制成如下两幅不完整的统计图请结合图中所给信息解答下列问题:
本次调查的学生共有______人,在扇形统计图中,m的值是______.
分别求出参加调查的学生中选择绘画和书法的人数,并将条形统计图补充完整.
该校共有学生2000人,估计该校约有多少人选修乐器课程?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:如图1,在平面直角坐标系中,点M是二次函数图象上一点,过点M作轴,如果二次函数的图象与关于l成轴对称,则称是关于点M的伴随函数如图2,在平面直角坐标系中,二次函数的函数表达式是,点M是二次函数图象上一点,且点M的横坐标为m,二次函数是关于点M的伴随函数.
若,
求的函数表达式.
点,在二次函数的图象上,若,a的取值范围为______.
过点M作轴,
如果,线段MN与的图象交于点P,且MP::3,求m的值.
如图3,二次函数的图象在MN上方的部分记为,剩余的部分沿MN翻折得到,由和所组成的图象记为.以、为顶点在x轴上方作正方形直接写出正方形ABCD与G有三个公共点时m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将绕点逆时针旋转得到,的延长线与相交于点,连接、.
如图,若,.
①求证:;②猜想线段、的数量关系,并证明你的猜想;
如图,若,(为常数),求的值(用含、的式子表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点D,E分别在正△ABC的边AB,BC上,且BD=CE,CD,AE交于点F.
(1)①求证:△ACE≌△CBD;②求∠AFD的度数;
(2)如图2,若D,E,M,N分别是△ABC各边上的三等分点,BM,CD交于Q.若△ABC的面积为S,请用S表示四边形ANQF的面积 ;
(3)如图3,延长CD到点P,使∠BPD=30°,设AF=a,CF=b,请用含a,b的式子表示PC长,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,中,,,.
点从点开始沿边向以的速度移动,点从点开始沿边向点以的速度移动.如果、分别从,同时出发,线段能否将分成面积相等的两部分?若能,求出运动时间;若不能说明理由.
若点沿射线方向从点出发以的速度移动,点沿射线方向从点出发以的速度移动,、同时出发,问几秒后,的面积为?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com