精英家教网 > 初中数学 > 题目详情

【题目】关于一次函数y=﹣2x+3,下列结论正确的是(  )

A. 图象过点(1,﹣1) B. 图象经过一、二、三象限

C. y随x的增大而增大 D. 当x>时,y<0

【答案】D

【解析】A、把点的坐标代入关系式,检验是否成立;B、根据系数的性质判断,或画出草图判断;C、根据一次项系数判断;D、可根据函数图象判断,亦可解不等式求解.

解:A、当x=1时,y=1.所以图象不过(1,-1),故错误;
B、∵-2<0,3>0,∴图象过一、二、四象限,故错误;
C、∵-2<0,∴y随x的增大而减小,故错误;
D、画出草图.
∵当x>时,图象在x轴下方,∴y<0,故正确.
故选D.

“点睛”本题主要考查了一次函数的性质以及一次函数与方程、不等式的关系.常采用数形结合的方法求解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】 为更新果树品种,某果园计划新购进AB两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.

1)求yx的函数关系式;

2)若在购买计划中,B种苗的数量不超过35棵,但不少于A种苗的数量,请设计购买方案,使总费用最低,并求出最低费用.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小龙在学校组织的社会调查活动中负责了解他所居住的小区450户居民的家庭收入情况.他从中随机调查了40户居民家庭收入情况(收入取整数,单位:元),并绘制了如下的频数分布表和频数分布直方图.

根据以上提供的信息,解答下列问题:

(1)补全频数分布表.

(2)补全频数分布直方图.

(3)绘制相应的频数分布折线图.

(4)请你估计该居民小区家庭属于中等收入(大于1000不足1600元)的大约有多少户?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知⊙O的弦CD与直径AB垂直于F,点ECD上,且AE=CE.

(1)求证:CA2=CE CD;

(2)已知CA=5,EC=3,求sinEAF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:在RtABC中,∠BAC=90°DBC的中点,EAD的中点.过点AAFBCBE的延长线于点F

1)求证:AEF≌△DEB

2)证明四边形ADCF是菱形;若AC=4AB=5,求菱形ADCF的面积.

3)当ABC满足什么条件时,四边形ADCF是正方形,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AE∥BF,AC平分∠BAE,交BF于点C,BD平分∠ABC,交AE于点D,连接CD.

(1)求证:四边形ABCD是菱形;

(2)若AB=5,AC=6,求AE,BF之间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明购买A,B两种商品,每次购买同一种商品的单价相同,具体信息如下表:

次数

购买数量(件

购买总费用(元

A

B

第一次

2

1

55

第二次

1

3

65

根据以上信息解答下列问题:

(1)求A,B两种商品的单价;

(2)若第三次购买这两种商品共12件,且A种商品的数量不少于B种商品数量的2倍,请设计出最省钱的购买方案,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知∠1+∠2﹦180°,∠3﹦∠B,则DEBC,下面是王华同学的推导过程﹐请你帮他在括号内填上推导依据或内容.

证明:

∵∠1+∠2﹦180(已知),

∠1﹦∠4 _________________

∴∠2﹢_____﹦180°.

EHAB___________________________________

∴∠B﹦∠EHC________________________________

∵∠3﹦∠B(已知)

∴ ∠3﹦∠EHC____________________

DEBC__________________________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:(1)当线段AB平行于投影面P时,它的正投影是线段A1B1,线段与它的投影的大小关系为AB

___A1B1

(2)当线段AB倾斜于投影面P时,它的正投影是线段A2B2,线段与它的投影的大小关系为AB___A2B2

(3)当线段AB垂直于投影面P时,它的正投影是______.

查看答案和解析>>

同步练习册答案