精英家教网 > 初中数学 > 题目详情

【题目】如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣3,0)、B(5,0)、C(0,5)三点,O为坐标原点

(1)求此抛物线的解析式;

(2)若把抛物线y=ax2+bx+c(a≠0)向下平移个单位长度,再向右平移n(n>0)个单位长度得到新抛物线,若新抛物线的顶点M在△ABC内,求n的取值范围;

(3)设点P在y轴上,且满足∠OPA+∠OCA=∠CBA,求CP的长.

【答案】(1)y=﹣x2+x+5;(2)0<n<3;(3)PC的长为7或17.

【解析】

试题分析:(1)根据A、B、C三点的坐标,利用待定系数法可求得抛物线的解析式即可;(2)可先求得抛物线的顶点坐标,再利用坐标平移,可得平移后的坐标为(1+n,1),再由B、C两点的坐标可求得直线BC的解析式,可求得y=1时,对应的x的值,从而可求得n的取值范围;(3)当点P在y轴负半轴上和在y轴正半轴上两种情况,根据这两种情况分别求得PC的长即可.

试题解析:(1)把A、B、C三点的坐标代入函数解析式可得

解得

∴抛物线解析式为y=﹣x2+x+5;

(2)∵y=﹣x2+x+5,

∴抛物线顶点坐标为(1,),

∴当抛物线y=ax2+bx+c(a≠0)向下平移个单位长度,再向右平移n(n>0)个单位长度后,得到的新抛物线的顶点M坐标为(1+n,1),

设直线BC解析式为y=kx+m,把B、C两点坐标代入可得,解得

∴直线BC的解析式为y=﹣x+5,

令y=1,代入可得1=﹣x+5,解得x=4,

∵新抛物线的顶点M在△ABC内,

∴1+n<4,且n>0,解得0<n<3,

即n的取值范围为0<n<3;

(3)当点P在y轴负半轴上时,如图1,过P作PD⊥AC,交AC的延长线于点D,

由题意可知OB=OC=5,

∴∠CBA=45°,

∴∠PAD=∠OPA+∠OCA=∠CBA=45°,

∴AD=PD,

在Rt△OAC中,OA=3,OC=5,可求得AC=

设PD=AD=m,则CD=AC+AD=+m,

∵∠ACO=∠PCD,∠COA=∠PDC,

∴△COA∽△CDP,

,即

得m=,PC=17;

可求得PO=PC﹣OC=17﹣5=12,

如图2,在y轴正半轴上截取OP′=OP=12,连接AP′,

则∠OP′A=∠OPA,

∴∠OP′A+∠OCA=∠OPA+∠OCA=∠CBA,

∴P′也满足题目条件,此时P′C=OP′﹣OC=12﹣5=7,

综上可知PC的长为7或17.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】方格纸上有A,B两点,若以B点为原点建立平面直角坐标系,则A点坐标为(-4,3),若以A点为原点建立平面直角坐标系,则B点坐标为( )

A. (-4,-3) B. (-4,3) C. (4,-3) D. (4,3)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点P(﹣34)关于y轴对称点的坐标为(  )

A. (﹣34B. 34C. 3,﹣4D. (﹣3,﹣4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届汉字听写大赛,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:

请结合图表完成下列各题:

1)求表中a的值;

2)请把频数分布直方图补充完整;

3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知三角形的三个顶点坐标分别是(-14)、(11)、(-4,-1),现将这三个点先向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标是(

A. (22),(34),(17) B. (22),(43),(17)

C. (22),(34),(17) D. (2,-2),(33),(17)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】两个两位数的十位上的数字相同,其中一个两位数的个位上的数字是6,另一个两位数的个位上的数字是4,它们的平方差是220,求这两位数..

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】等角的补角相等的条件是_____,结论是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】体育委员统计了七(1)班全体同学60秒跳绳的次数,并列出下面的频数分布表:

次数

60≤x<80

80≤x<100

100≤x<120

120≤x<140

140≤x<160

160≤x<180

180≤x<200

频数

2

4

21

14

7

3

1

给出以下结论:①全班有52个学生; ②组距是20; ③组数是7;④跳绳次数在100≤x<140范围的学生约占全班学生的67%.其中正确结论的个数是(  )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对称轴平行于y轴的抛物线的顶点为点(2,3)且抛物线经过点(3,1),那么抛物线解析式是______

查看答案和解析>>

同步练习册答案