【题目】如图1,在梯形ABCD中,AB∥CD,∠B=90°,AB=2,CD=1,BC=m,P为线段BC上的一动点,且和B、C不重合,连接PA,过P作PE⊥PA交CD所在直线于E.设BP=x,CE=y.
(1)求y与x的函数关系式;
(2)若点P在线段BC上运动时,点E总在线段CD上,求m的取值范围;
(3)如图2,若m=4,将△PEC沿PE翻折至△PEG位置,∠BAG=90°,求BP长.
【答案】(1)
(2)0<
(3)BP的长为或2
【解析】
分析:(1)证明△ABP∽△PCE,利用比例线段关系求出y与x的函数关系式。
(2)根据(1)中求出的y与x的关系式,利用二次函数性质,求出其最大值,列不等式确定m的取值范围。
(3)根据翻折的性质及已知条件,构造直角三角形,利用勾股定理求出BP的长度。
解:(1)∵∠APB+∠CPE=90°,∠CEP+∠CPE=90°,∴∠APB=∠CEP。
又∵∠B=∠C=90°,∴△ABP∽△PCE。
∴,即。
∴y与x的函数关系式为。
(2)∵,
∴当x=时,y取得最大值,最大值为。
∵点P在线段BC上运动时,点E总在线段CD上,
∴,解得。
∵m>0,∴m的取值范围为:0<。
(3)由折叠可知,PG=PC,EG=EC,∠GPE=∠CPE,
又∵∠GPE+∠APG=90°,∠CPE+∠APB=90°,
∴∠APG=∠APB。
∵∠BAG=90°,∴AG∥BC。∴∠GAP=∠APB。
∴∠GAP=∠APG。∴AG=PG=PC。
如图,分别延长CE、AG,交于点H,
则易知ABCH为矩形,HE=CH﹣CE=2﹣y,,
在Rt△GHE中,由勾股定理得:GH2+HE2=GH2,
即:x2+(2﹣y)2=y2,化简得:x2﹣4y+4=0 ①
由(1)可知,这里m=4,∴。
代入①式整理得:x2﹣8x+4=0,解得:x=或x=2。
∴BP的长为或2。
科目:初中数学 来源: 题型:
【题目】已知,如图,在平行四边形ABCD中,BF平分交AD于点F,AEBF于点O,交BC于点E,连接EF.
(1)求证:四边形ABEF是菱形;
(2)若AE=6,BF=8,CE=3,求四边形ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点的坐标为,过点作轴的平行线,交轴于点,且三角形的面积是.
()求点,的坐标;
()点,分别为线段,上的两个动点,点从点向左以个单位长度/秒运动,同时点从点向点以个单位长度/秒运动,如图所示,设运动时间为秒.
①当时,求的取值范围;
②是否存在一段时间,使得?若存在,求出的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某餐厅中,一张桌子可坐6人,有如图所示的两种摆放方式:
(1)当有n张桌子时,两种摆放方式各能坐多少人?
(2)一天中午餐厅要接待98位顾客共同就餐,但餐厅只有25张这样的餐桌.若你是这个餐厅的经理,你打算选择哪种方式来摆放餐桌?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,张三打算在院落种上蔬菜.已知院落为东西长为32米,南北宽为20米的长方形,为了行走方便,要修筑同样宽度的三条小路,东西两条,南北一条,余下的部分种上各类蔬菜.若每条小路的宽均为1米.
(1)求蔬菜的种植面积;
(2)若每平方米的每季蔬菜的值为3元,成本为1元,这个院落每季的产值是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A,B,C在⊙O上,若∠BAC=45°,OB=2,则图中阴影部分的面积为( )
A. π-4 B. π-1 C. π-2 D. -2
【答案】C
【解析】试题解析:∵∠BAC=45°,
∴∠BOC=90°,
∴△OBC是等腰直角三角形,
∵OB=2,
∴△OBC的BC边上的高为:OB=,
∴BC=2
∴S阴影=S扇形OBC﹣S△OBC=.
故选C.
【题型】单选题
【结束】
10
【题目】夏季的一天,身高为1.6m的小玲想测量一下屋前大树的高度,她沿着树影BA由B到A走去,当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3.2m,CA=0.8m,于是得出树的高度为( )
A.8m B.6.4m C.4.8m D.10m
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,M,N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞,工程人员为计算工程量,必须测量M、N两点之间的直线距离.选择测量点A、B、C,点B、C分别在AM、AN上,现测得AM=1千米,AN=1.8千米,AB=54米,BC=45米,AC=30米,求M、N两点之间的直线距离.
【答案】M、N两点之间的直线距离为1500米.
【解析】试题分析:先根据相似三角形的判定得出△ABC∽△AMN,再利用相似三角形的性质解答即可.
试题解析:在△ABC与△AMN中, , =,∴,又∵∠A=∠A,
∴△ABC∽△AMN,∴,即,
解得:MN=1500米,
答:M、N两点之间的直线距离是1500米;
考点:相似三角形的应用.
【题型】解答题
【结束】
23
【题目】如图,在△ADC中,点B是边DC上的一点,∠DAB=∠C, .若△ADC的面积为18cm,求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在学校组织的社会实践活动中,第一小组负责调查全校10000名同学每天完成家庭作业时间情况,他们随机抽取了一部分同学进行调查,井绘制了所抽取样本的频数分布表和额数分布直方图(如图).
时间x(小时) | 频数 | 百分比 |
0.5≤x<1 | 4 | 8% |
1≤x<1.5 | 5 | 10% |
1.5≤x<2 | a | 40% |
2≤x<2.5 | 15 | 30% |
2.5≤x<3 | 4 | 8% |
x≥3 | 2 | b |
频数分布表
请根据图中信息解答下列问题:
(1)该小组一共抽查了___________人;
(2)频数分布表中的a=___________,b=____________;
(3)将频数分布直方图补充完整(直接画图,不写计算过程);
(4)《辽宁省落实教育部等九部门关于中小学生减负措施实施方案》规定,初中生每天书面家庭作业时间不超过1.5小时,根据表中数据,请你提出合理化建议.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com