精英家教网 > 初中数学 > 题目详情
8.已知等腰△ABC的两边长分别为2和4,则等腰△ABC的周长为(  )
A.8B.10C.8或10D.12

分析 等腰△ABC的两边长分别为2和4,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.

解答 解:①当腰是2,底边是4时,2+2=4,不满足三角形的三边关系,因此舍去.
②当底边是2,腰长是4时,能构成三角形,则其周长=2+4+4=10.
故选B.

点评 本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

18.已知x轴上两点A(-1,0)、B(4,0).
(1)在y轴上取一点C,使∠ACB=90°,则点C的坐标为(0,2)或(0,-2).
(2)设点$D({x,-\frac{1}{2}{x^2}+\frac{3}{2}x+2})$是平面直角坐标系xOy中的一个动点,以AB为斜边的直角三角形ADB与△AOC相似时,求D点坐标.
(3)设动点$D({x,-\frac{1}{2}{x^2}+\frac{3}{2}x+2})$到x轴的距离为h,当h≥OC时,求x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.阅读材料:如图(1)在任意△ABC中,点P是AB上的动点(点P异于点A、B),经过点P的直线PQ∥BC,交AC于点Q,我们不妨称这种直线为过点P的△ABC的相似线,经过进一步研究,我们发现$\frac{AP}{AB}$=$\frac{AQ}{AC}$=$\frac{PQ}{BC}$.
(1)若AP=3,AB=6,BC=8,则PQ=4.
(2)如图(2),在△MGN中,∠MGN=90°,MG=3,NG=4,GH是斜边MN上的高,点E在MN上(点E不与M、N重合),过点E作EF⊥MN与△MGN的直角边相交于点F,当点E在MH上时,直线EF为过点E的△MGH是相似线,线段GH的长为$\frac{12}{5}$,线段MH的长为$\frac{9}{5}$.
(3)在(2)的条件下,设ME=x,△MEF的面积为y,当点E在斜边MN上移动时,
①求y与x的函数关系式(写出自变量x的取值范围).
②当x取何值时,y有最大值?并求出最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,已知△ABC中,DE∥BC,DE=8,BC=12,AN⊥BC交DE于M,四边形BCED的面积为90.求△ADE的面积及AM、AN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:
(1)画出△ABC关于y轴对称的△A1B1C1,并写出A1B1的长$\sqrt{5}$.
(2)画出△ABC先向下5个单位,再向左平移3个单位得到的△A2B2C2,并写出点A2的坐标(-1,-1).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.如图,在Rt△ABC中,∠A=90°,BC边的垂直平分线交BC于点D,交AB与E,若CE平分∠ACB,EC=5,ED=3,则AB的长是8.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.将方程x2+10x+1=0配方后,原方程变形为x+5)2=24.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.计算
(1)$(-\frac{1}{2}+\frac{1}{4}+\frac{1}{5})×20$.
(2)$-{1^{2014}}-\frac{1}{6}×[{2×(-2)+10}]$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.如图,点F是?ABCD的边CD上一点,直线BF交AD的延长线于点E,则下列结论正确的有(  )
 ①$\frac{ED}{EA}$=$\frac{DF}{AB}$;②$\frac{DE}{BC}$=$\frac{EF}{FB}$;③$\frac{BC}{DE}$=$\frac{BF}{BE}$;④$\frac{BF}{BE}$=$\frac{BC}{AE}$.
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案