精英家教网 > 初中数学 > 题目详情

【题目】已知如图:直线AB⊥BC,四边形ABCD是正方形,且AB=6,点P是BD上一点,且PD=2,一块三角板的直角顶点放在点P上,另两条边与BC、AB所在直线相交于点E、F,在三角板绕点P旋转的过程中,使得△PBF是等腰三角形,(1)线段BD=________,(2)请写出所有满足条件的BF的长__________.

【答案】 48

【解析】

(1)由勾股定理即可求得BD长;

(2)PBF是等腰三角形,分情况讨论即可.

(1)∵四边形ABCD是正方形,且AB=6,

BD==

故答案为:

(2)由(1)知, BD=,PD=2

BP=BD-PD=2=,

PBF是等腰三角形,

①当FB=FP时,

∵∠FBP=45 ,

∴∠FPB=45

∴∠BFP=90,

∴△BPF是等腰直角三角形,

由勾股定理得2FB2=BP2

解得FB=4;

②当BP=BF时,

由∠BFP=FBP=45得∠BPF=90,

BF2=2BP2

解得BF=8.

③当BP=BF时,BF=.

故答案为:48

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=30°,以直角顶点A为圆心,AB长为半径画弧交BC于点D,过D作DE⊥AC于点E.若DE=a,则△ABC的周长用含a的代数式表示为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】四个规模不同的滑梯ABCD , 它们的滑板长(平直的)分别为300m , 250m , 200m , 200m;滑板与地面所成的角度分别为30°,45°,45°,60°,则关于四个滑梯的高度正确说法(  )

A.A的最高
B.B的最高
C.C的最高
D.D的最高

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】满足下列条件的△ABC , 不是直角三角形的是(  )
A.∠C=∠A+∠B
B.abc=3:4:5
C.∠C=∠A-∠B
D.∠A:∠B:∠C=3:4:5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AB=AC∠BAC=54°∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EFEBC上,FAC上)折叠,点C与点O恰好重合,则∠OEC= 度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】连接四边形不相邻两个顶点的线段叫做四边形的对角线,如图1,四边形ABCD中线段AC、线段BD就是四边形ABCD 的对角线.把对角线互相垂直的四边形叫做垂美四边形.

(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由.

(2)性质探究:试探索垂美四边形ABCD两组对边AB,CD的平方和与BC,AD的平方和之间的数量关系.

猜想结论:(要求用文字语言叙述)______

写出证明过程(先画出图形,写出已知、求证).

(3)问题解决:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG,GE,已知AC=4,AB=5,求GE长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ACB中,∠ACB=90°,∠ABC的平分线BE∠BAC的外角平分线AD相交于点P,分别交ACBC的延长线于E,D.过PPF⊥ADAC的延长线于点H,交BC的延长线于点F,连接AFDH于点G.则下列结论:①∠APB=45°;②PF=PA;③BD﹣AH=AB;④DG=AP+GH.其中正确的是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在梯形ABCD中,ADBCAB=CD , ∠AOD=60°,EOA的中点,FOB的中点,GCD的中点,试判断△EFG的形状并说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠MAN=16°,A1点在AM上,在AN上取一点A2,使A2A1=AA1,再在AM上取一点A3使A3A2=A2A1,如此一直作下去,到不能再作为止.那么作出的最后一点是(  )

A. A5 B. A6 C. A7 D. A8

查看答案和解析>>

同步练习册答案