精英家教网 > 初中数学 > 题目详情
12.矩形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件AB=BC(答案不唯一),使其成为正方形(只填一个即可)

分析 此题是一道开放型的题目答案不唯一,证出四边形ABCD是菱形,由正方形的判定方法即可得出结论.

解答 解:添加条件:AB=BC,理由如下:
∵四边形ABCD是矩形,AB=BC,∴四边形ABCD是菱形,
∴四边形ABCD是正方形,
故答案为:AB=BC(答案不唯一).

点评 本题考查了矩形的性质,菱形的判定,正方形的判定的应用,能熟记正方形的判定定理是解此题的关键,注意:有一组邻边相等的矩形是正方形,对角线互相垂直的矩形是正方形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.如图,已知抛物线y=ax2-2$\sqrt{3}$ax-9a与坐标轴交于A,B,C三点,其中C(0,3),∠BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N.
(1)直接写出a的值、点A的坐标及抛物线的对称轴;
(2)点P为抛物线的对称轴上一动点,若△PAD为等腰三角形,求出点P的坐标;
(3)证明:当直线l绕点D旋转时,$\frac{1}{AM}$+$\frac{1}{AN}$均为定值,并求出该定值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.下列运算正确的是(  )
A.a6÷a3=a2B.2a3+3a3=5a6C.(-a32=a6D.(a+b)2=a2+b2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.四边形ABCD是菱形,∠BAD=60°,AB=6,对角线AC与BD相交于点O,点E在AC上,若OE=$\sqrt{3}$,则CE的长为4$\sqrt{3}$或2$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.下列算式运算结果正确的是(  )
A.(2x52=2x10B.(-3)-2=$\frac{1}{9}$C.(a+1)2=a2+1D.a-(a-b)=-b

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.先化简,再求值:$\frac{x-3}{{x}^{2}-1}$•$\frac{{x}^{2}+2x+1}{x-3}$-($\frac{1}{x-1}$+1),其中x=2cos60°-3.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.下列运算正确的是(  )
A.$\sqrt{2}+\sqrt{3}=\sqrt{5}$B.${({-\frac{1}{2}x{y^2}})^3}=-\frac{1}{6}{x^3}{y^6}$
C.(-x)5÷(-x)2=x3D.$\sqrt{18}+\root{3}{-64}=3\sqrt{2}-4$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于点C,且OA=2,OB=8,OC=6.
(1)求抛物线的解析式;
(2)点M从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时,点N从B出发,在线段BC上以每秒1个单位长度的速度向C点运动,当其中一个点到达终点时,另一个点也停止运动,当△MBN存在时,求运动多少秒使△MBN的面积最大,最大面积是多少?
(3)在(2)的条件下,△MBN面积最大时,在BC上方的抛物线上是否存在点P,使△BPC的面积是△MBN面积的9倍?若存在,求点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.已知圆锥的底面面积为9πcm2,母线长为6cm,则圆锥的侧面积是(  )
A.18πcm2B.27πcm2C.18cm2D.27cm2

查看答案和解析>>

同步练习册答案