精英家教网 > 初中数学 > 题目详情
如图,抛物线轴于A、B两点,交轴于点C,
点P是它的顶点,点A的横坐标是3,点B的横坐标是1.

(1)求的值;
(2)求直线PC的解析式;
(3)请探究以点A为圆心、直径为5的圆与直线PC的位置关系,并说明理由.
(参考数据

试题分析:(1)由题意知,代入A(-3,0)B(1,0)
   (4分)
(2)  (3分)
(3)⊙A与直线PC相交(可用相似知识,也可三角函数,求得圆心A到PC的距离d与r大小比较,从而确定直线和圆的位置关系。)(3分)
点评:先由一元二次方程的两根关系,得出两圆半径之和,然后根据圆与圆的位置关系判断条件,确定位置关系.设两圆的半径分别为R和r,且R≥r,圆心距为d:外离,则d>R+r;外切,则d=R+r;相交,则R-r<d<R+r;内切,则d=R-r;内含,则d<R-r.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,二次函数的图像过点,与轴交于点.

(1)证明:(其中是原点);
(2)在抛物线的对称轴上求一点,使的值最小;
(3)若是线段上的一个动点(不与重合),过轴的平行线,分别交此二次函数图像及轴于两点 . 请问
是否存在这样的点,使.  若存在,
请求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点A的坐标为(0,-4),点Bx轴上一动点,以线段AB为边作正方形ABCD(按逆时针方向标记),正方形ABCD随着点B的运动而相应变动.点Ey轴的正半轴与正方形ABCD某一边的交点,设点B的坐标为(t,0),线段OE的长度为m

(1)当t=3时,求点C的坐标;
(2)当t>0时,求mt之间的函数关系式;
(3)是否存在t,使点M(-2,2)落在正方形ABCD的边上?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,点O为坐标原点,以点A(0,-3)为圆心,5为半径作圆A,交x轴于B、C两点,交y轴于点D、E两点.

(1)如果一个二次函数图象经过B、C、D三点,求这个二次函数的解析式;
(2)设点P的坐标为(m,0)(m>5),过点P作x轴交(1)中的抛物线于点Q,当以为顶点的三角形与相似时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:计算题

如图,抛物线y=x2﹣3x﹣18与x轴交于A、B两点,与y轴交于点C,连接BC、AC.

(1)求AB和OC的长;
(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作直线l平行BC,交AC于点D.设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;
(3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留π).

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在二次函数y=-x2+bx+c中,函数y与自变量x的部分对应值如下表:
x
-3
-2
-1
1
2
3
4
5
6
y
-14
-7
-2
2
m
n
-7
-14
-23
=        =      .

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

抛物线的对称轴是____,顶点坐标是____.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,抛物线与直线相交于O(0,0)和A(3,2)两点,则不等式的解集为          

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数y=ax2+bx+c(a≠0)的图像如右图所示,有下列4个结论:①;②; ③;④;⑤其中正确的是( )
A.2个B.3个C.4个D.5

查看答案和解析>>

同步练习册答案