精英家教网 > 初中数学 > 题目详情
在二次函数y=-x2+bx+c中,函数y与自变量x的部分对应值如下表:
x
-3
-2
-1
1
2
3
4
5
6
y
-14
-7
-2
2
m
n
-7
-14
-23
=        =      .
1,-2

试题分析:在二次函数y=-x2+bx+c中,在表中选择两点(-1,-2),(1,2)列方程组
解得,二次函数y=-x2+2x+1;当x=2时m=1;当x=3时n=-2
点评:本题考查二次函数的知识,解决本题的关键是对二次函数的性质要熟悉,考生要会用待定系数法求二次函数的解析式,此类题是考试重点
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,二次函数y=ax2+6x+c的图象经过点A(4,0)、B(﹣1,0),与y轴交于点C,点D在线段OC上,OD=t,点E在第二象限,∠ADE=90°,tan∠DAE=,EF⊥OD,垂足为F.

(1)求这个二次函数的解析式;
(2)求线段EF、OF的长(用含t的代数式表示);
(3)当△ECA为直角三角形时,求t的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,半径为2的⊙C与轴的正半轴交于点A,与轴的正半轴交于点B,点C的坐标为(1,0),若抛物线过A、B两点。

(1)求抛物线的解析式;
(2)在抛物线上是否存在P,使得∠PBO=∠POB?若存在,求出点P的坐标;若不存在说明理由;
(3)若点M是抛物线(在第一象限内的部分)上一点,△MAB的面积为S,求S的最大(小)值。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,二次函数的图象与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0).

(1)求该二次函数的关系式;
(2)写出该二次函数的对称轴和顶点坐标;
(3)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;
(4)若平行于x轴的动直线与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的关系为y=ax2+bx+c(a≠0).若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最高的是
A.第8秒B.第10秒C.第12秒D.第15秒

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线轴于A、B两点,交轴于点C,
点P是它的顶点,点A的横坐标是3,点B的横坐标是1.

(1)求的值;
(2)求直线PC的解析式;
(3)请探究以点A为圆心、直径为5的圆与直线PC的位置关系,并说明理由.
(参考数据

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

一条抛物线具有下列特征:(1)经过点A(0,3);(2)在x轴左侧的部分是上升的,在x轴右侧的部分是下降的,试写出一条满足这两条特征的抛物线的表达式:               

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知二次函数y=(x-3m)²+m-1(m为常数),当m取不同的值时,其图象构成一个“抛物线系”,该抛物线系中所有抛物线的顶点都在一条直线上,那么这条直线的解析式是           

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

将抛物线y=2x2沿x轴方向向左平移1个单位后再沿y轴方向向上平移2个单位所得抛物线为
A.y=2(x-1)2+2B.y=2(x+1)2+2
C.y=2(x-1)2-2D.y=2(x+1)2-2

查看答案和解析>>

同步练习册答案