精英家教网 > 初中数学 > 题目详情
抛物线的对称轴是____,顶点坐标是____.
 ;(2,5)

试题分析:由抛物线的对称轴可知,此时的对称轴是x=2,顶点坐标是(2,5)
点评:本题属于对抛物线的顶点坐标和抛物线的对称轴的讲解和运用
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=x2+bx-2与x轴交于A、B两点,与y 轴交于C点,且A(一1,0).

(1)求抛物线的解析式及顶点D的坐标;
(2)若将上述抛物线先向下平移3个单位,再向右平移2个单位,请直接写出平移后的抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知二次函数图像向左平移2个单位,向下平移1个单位后得到二次函数的图像,则二次函数的解析式为____    

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量(万件)与销售单价(元)之间的关系可以近似地看作一次函数.(利润=售价-制造成本)
(1)写出每月的利润(万元)与销售单价(元)之间的函数关系式;
(2)当销售单价为多少元时,厂商每月获得的利润为440万元?
(3)根据相关部门规定,这种电子产品的销售单价不能高于40元,如果厂商每月的制造成本不超过540万元,那么当销售单价为多少元时,厂商每月获得的利润最大?最大利润为多少万元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,二次函数y=ax2+6x+c的图象经过点A(4,0)、B(﹣1,0),与y轴交于点C,点D在线段OC上,OD=t,点E在第二象限,∠ADE=90°,tan∠DAE=,EF⊥OD,垂足为F.

(1)求这个二次函数的解析式;
(2)求线段EF、OF的长(用含t的代数式表示);
(3)当△ECA为直角三角形时,求t的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

二次函数的图象如图所示,其顶点坐标为M(1,-4).

(1)求二次函数的解析式;
(2)将二次函数的图象在轴下方的部分沿轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合新图象回答:当直线与这个新图象有两个公共点时,求的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线轴于A、B两点,交轴于点C,
点P是它的顶点,点A的横坐标是3,点B的横坐标是1.

(1)求的值;
(2)求直线PC的解析式;
(3)请探究以点A为圆心、直径为5的圆与直线PC的位置关系,并说明理由.
(参考数据

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知二次函数y=(x-3m)²+m-1(m为常数),当m取不同的值时,其图象构成一个“抛物线系”,该抛物线系中所有抛物线的顶点都在一条直线上,那么这条直线的解析式是           

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

函数时,只在时取得最大值, 则实数的取值范围是      

查看答案和解析>>

同步练习册答案