精英家教网 > 初中数学 > 题目详情

【题目】2a2+[a2+(3a2-2a)-2(a2-3a)] 其中a=- .

【答案】解:原式=2a2+(a2+3a2-2a-2a2+6a)=2a2+a2+3a2-2a-2a2+6a=4a2+4a,
当a= 时,原式= =-1
【解析】先将代数式根据去括号、合并同类项的法则化简,再将a的值代入化简后的代数式计算即可。
【考点精析】认真审题,首先需要了解去括号法则(去括号、添括号,关键要看连接号.扩号前面是正号,去添括号不变号.括号前面是负号,去添括号都变号),还要掌握代数式求值(求代数式的值,一般是先将代数式化简,然后再将字母的取值代入;求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,直线AB与x轴y轴分别交于A,B两点,与双曲线y= 在第一象限内交于点C,BO=2AO=4,△AOC的面积为2 +2.
(1)求点C的坐标和k的值;
(2)若点P在双曲线y= 上,点Q在y轴上,且以A,B,P,Q为顶点的四边形为平行四边形,求所有符合题意的点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°BD平分∠ABC,与AC交于点D,点OAB上一点,⊙OBD两点,且分别交ABBC于点EF

1)求证:AC是⊙O的切线;

2)已知AB=10BC=6,求⊙O的半径r

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知∠1=∠2,∠3=∠4,∠BOD= ∠AOB=90°.下列判断:①射线OF是∠BOE的角平分线;②∠DOE的补角是∠BOC;③∠AOC的余角只有∠COD;④∠DOE的余角有∠BOE和∠COD;⑤∠COD=∠BOE.其中正确的有( )

A.5个
B.4个
C.3个
D.2个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,3s后,两点相距18个单位长度.已知点B的速度是点A的速度的5倍(速度单位:单位长度/s).

(1)求出点A、点B运动的速度,并在数轴上标出A,B两点从原点出发运动3s时的位置;
(2)若A,B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动,几秒时,原点恰好处在点A、点B的正中间?
(3)当A,B两点从(2)中的位置继续以原来的速度沿数轴向左运动的同时,另一点C从原点位置也向点A运动,当遇到点A后,立即返回向点B运动,遇到点B后又立即返回向点A运动,如此往返,直到点B追上点A时,点C立即停止运动.若点C一直以8个单位长度/s的速度匀速运动,则点C从开始运动到停止运动,行驶的路程是多少个单位长度?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】a3(3an-2am+4ak)=3a9-2a6+4a4,则mnk的值分别为(

A. 631 B. 361 C. 213 D. 231

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P是平行四边形纸片ABCD的BC边上一点,以过点P的直线为折痕折叠纸片,使点C,D落在纸片所在平面上C′,D′处,折痕与AD边交于点M;再以过点P的直线为折痕折叠纸片,使点B恰好落在C′P边上B′处,折痕与AB边交于点N.若∠MPC=75°,则∠NPB′=°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,△ABC中,AB=AC,∠BAC=120°,AC的垂直平分线EF交AC于点E,交BC于点F.求证:BF=2CF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线k>0)与双曲线x>0)交于点MN,且点N的横坐标为k. .

(1) 如图1,当k=1时.

①求m的值及线段MN的长;

②在y轴上是否是否存在点Q,使∠MQN=90°,若存在,请求出点Q的坐标;若不存在,请说明理由.

(2) 如图2,以MN为直径作⊙P,当⊙Py轴相切时,求k值.

查看答案和解析>>

同步练习册答案