【题目】如图,在Rt△ABC中,∠C=90°,BD平分∠ABC,与AC交于点D,点O是AB上一点,⊙O过B、D两点,且分别交AB、BC于点E、F.
(1)求证:AC是⊙O的切线;
(2)已知AB=10,BC=6,求⊙O的半径r.
【答案】(1)证明见解析;(2).
【解析】试题分析:(1)连接OD.欲证AC是⊙O的切线,只需证明AC⊥OD即可;
(2)利用平行线截线段成比例推知;然后将图中线段间的和差关系代入该比例式,通过解方程即可求得r的值,即⊙O的半径r的值.
试题解析:(1)证明:连接OD.
∵OB=OD,
∴∠OBD=∠ODB(等角对等边);
∵BD平分∠ABC,
∴∠ABD=∠DBC,
∴∠ODB=∠DBC(等量代换),
∴OD∥BC(内错角相等,两直线平行);
又∵∠C=90°(已知),
∴∠ADO=90°(两直线平行,同位角相等),
∴AC⊥OD,即AC是⊙O的切线;
(2)解:由(1)知,OD∥BC,
∴(平行线截线段成比例),
∴,
解得r=,即⊙O的半径r为.
科目:初中数学 来源: 题型:
【题目】计算2x2y(x-3xy2)=( )
A. 2x3y-3x3y3 B. 2xy2-6x3y3 C. 2x3y-6x3y3 D. 2x2y+6x3y3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列语句正确的是( )
A.三角形的内心是三角形三条角平分线的交点B.相等的圆心角所对的弧相等
C.圆有且只有一个内接三角形D.平分弦的直径垂直于弦
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC,∠BAC=45°,BD⊥AC,垂足为D点,AE平分∠BAC,交BD于F,交BC于E,点G为AB的中点,连接DG,交AE于点H,
(1)求∠ACB的度数;
(2)HE= AF.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com