精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC中,AB=AC,∠BAC=45°,BD⊥AC,垂足为D点,AE平分∠BAC,交BD于F,交BC于E,点G为AB的中点,连接DG,交AE于点H,

(1)求∠ACB的度数;
(2)HE= AF.

【答案】
(1)解:∵AB=AC,

∴∠ACB=∠ABC,

∵∠BAC=45°,

∴∠ACB=∠ABC= (180°﹣∠BAC)= (180°﹣45°)=67.5°


(2)解:连结HB,

∵AB=AC,AE平分∠BAC,

∴AE⊥BC,BE=CE,

∴∠CAE+∠C=90°,

∵BD⊥AC,

∴∠CBD+∠C=90°,

∴∠CAE=∠CBD,

∵BD⊥AC,D为垂足,

∴∠DAB+∠DBA=90°,

∵∠DAB=45°,

∴∠DBA=45°,

∴∠DBA=∠DAB,

∴DA=DB,

在Rt△BDC和Rt△ADF中,

∴Rt△BDC≌Rt△ADF (ASA),

∴BC=AF,

∵DA=DB,点G为AB的中点,

∴DG垂直平分AB,

∵点H在DG上,

∴HA=HB,

∴∠HAB=∠HBA= ∠BAC=22.5°,

∴∠BHE=∠HAB+∠HBA=45°,

∴∠HBE=∠ABC﹣∠ABH=67.5°﹣22.5°=45°,

∴∠BHE=∠HBE,

∴HE=BE= BC,

∵AF=BC,

∴HE= AF


【解析】(1)根据等腰三角形性质和三角形内角和定理求出即可;(2)证△ADF≌△BDC,推出AF=BC,求出HE=BE=CE,即可得出答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°BD平分∠ABC,与AC交于点D,点OAB上一点,⊙OBD两点,且分别交ABBC于点EF

1)求证:AC是⊙O的切线;

2)已知AB=10BC=6,求⊙O的半径r

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P是平行四边形纸片ABCD的BC边上一点,以过点P的直线为折痕折叠纸片,使点C,D落在纸片所在平面上C′,D′处,折痕与AD边交于点M;再以过点P的直线为折痕折叠纸片,使点B恰好落在C′P边上B′处,折痕与AB边交于点N.若∠MPC=75°,则∠NPB′=°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,△ABC中,AB=AC,∠BAC=120°,AC的垂直平分线EF交AC于点E,交BC于点F.求证:BF=2CF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列叙述正确的是(

A. 平分弦的直径必垂直于弦 B. 三角形的外心到三边的距离相等

C. 相等的圆心角所对的弧相等 D. 垂直平分弦的直线必平分这条弦所对的弧

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AB=AD,BC=DC,AC、BD相交于点O,点E在AO上,且OE=OC.

(1)求证:1=2;

(2)连结BE、DE,判断四边形BCDE的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为迎接体育中考,了解学生的体育情况,学校随机调查了本校九年级50名学生“30秒跳绳”的次数,并将调查所得的数据整理如下:

根据以上图表信息,解答下列问题:

(1)表中的a m

(2)请把频数分布直方图补充完整;(画图后请标注相应的数据)

(3)若该校九年级共有600名学生,请你估计“30秒跳绳”的次数60次以上(含60次)的学生有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线k>0)与双曲线x>0)交于点MN,且点N的横坐标为k. .

(1) 如图1,当k=1时.

①求m的值及线段MN的长;

②在y轴上是否是否存在点Q,使∠MQN=90°,若存在,请求出点Q的坐标;若不存在,请说明理由.

(2) 如图2,以MN为直径作⊙P,当⊙Py轴相切时,求k值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,AB的垂直平分线交AB于N,交AC于M.

(1)若∠B=70°,则∠NMA的度数是
(2)连接MB,若AB=8cm,△MBC的周长是14cm.
①求BC的长;
②在直线MN上是否存在点P,使由P,B,C构成的△PBC的周长值最小?若存在,标出点P的位置并求△PBC的周长最小值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案