精英家教网 > 初中数学 > 题目详情

【题目】二次函数y=ax2+bx+c(a≠0)的图象如图,对称轴是x=1,有以下四个结论:
①abc>0;②b2﹣4ac>0;③b=﹣2a;④a+b+c>2,
其中正确的是(填写序号)

【答案】②③④
【解析】解:①∵抛物线的开口向下,
∴a<0,
∵与y轴的交点为在y轴的正半轴上,
∴c>0,
∵对称轴为x=﹣ >0,
∴a、b异号,即b>0,
∴abc<0;
故本结论错误;
②从图象知,该函数与x轴有两个不同的交点,所以根的判别式△=b2﹣4ac>0;
故本结论正确;
③∵对称轴为x=﹣ =1,
∴b=﹣2a,
故本结论正确;
④由图象知,x=1时y>2,所以a+b+c>2,故本结论正确.
所以答案是②③④.
【考点精析】利用二次函数图象以及系数a、b、c的关系对题目进行判断即可得到答案,需要熟知二次函数y=ax2+bx+c中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上; a<0时,抛物线开口向下b与对称轴有关:对称轴为x=-b/2a;c表示抛物线与y轴的交点坐标:(0,c).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,该抛物线与x轴的一个交点为(﹣1,0),请回答以下问题.

(1)求抛物线与x轴的另一个交点坐标
(2)一元二次方程ax2+bx+c=0(a≠0)的解为
(3)不等式ax2+bx+c<0(a≠0)的解集是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在⊙O中,AB是直径,点C是 的中点,点P是 的中点,则∠PAB的度数(

A.30°
B.25°
C.22.5°
D.不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用尺规在一个平行四边形内作菱形ABCD,下列作法中错误的是(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ACB=90°,将△ABC绕着点A逆时针旋转得到△ADE,点C落在边AD上,连接BD.若∠DAE=α,则用含α的式子表示∠CBD的大小是(

A.α
B.90°﹣α
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.

(1如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;

(2如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;

(3若改变(2中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣ x2+bx+c经过A(﹣1,0),B(0,2)两点,将△OAB绕点B逆时针旋转90°后得到△O′A′B′,点A落到点A′的位置.

(1)求抛物线对应的函数关系式;
(2)将抛物线沿y轴平移后经过点A′,求平移后所得抛物线对应的函数关系式;
(3)设(2)中平移后所得抛物线与y轴的交点为C,若点P在平移后的抛物线上,且满足△OCP的面积是△O′A′P面积的2倍,求点P的坐标;
(4)设(2)中平移后所得抛物线与y轴的交点为C,与x轴的交点为D,点M在x轴上,点N在平移后所得抛物线上,直接写出以点C,D,M,N为顶点的四边形是以CD为边的平行四边形时点N的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,的平分线交于点,得的平分线交于点,得;…;的平分线交于点,则 =___________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.

查看答案和解析>>

同步练习册答案