精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系xOy中,已知点A的坐标为(a,0)(其中a>0),作ABy轴交反比例函数(k>0,x>0)的图象于点B.

(1)当OAB的面积为2时,k的值;a=2,过A点作ACOB(k>0,x>0)图象于点C,求C的横坐标;

(2)若D为射线AB上一点,连接OD交反比例函数图象于点E,DFx轴交反比例函数(k>0,x>0)的图象于点F,连接EF、EB,试猜想:的值是否随a的变化而变化?如果不变,求出的值;如果变化,请说明理由.

【答案】1)①4;②C横坐标为;(2 不变,比值为1

【解析】1)①由Ba),得到OA=aAB= SOAB=·AB·OA=2,即可得到结论;

过点CCDAO于点D,得到B22),AD=b,则C2+b),可证OABADC,得到,即,解方程得到b的值从而得到C横坐标

2不变,比值为1.,则yOE=SDBE= SDEF=代入 化简即可得到结论.

1)①∵Ba),∴OA=aAB=SOAB=·AB·OA=2,∴k=4;

过点CCDAO于点D

a=2,∴B22),

AD=b,∴C2+b).

ACOB,∴∠BOA=∠CAD

∵∠BAO=∠CDA,∴OABADC

,∴,∴b=解得:b=-1+(负值舍去),C横坐标=2-1+=

2不变,比值为1.理由如下

yOE=

SDBE= SDEF=

==1

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,边长为 a的正方形ABCD和边长为 b的正方形BEFG排放在一起,O1和O2分别是这两个正方形的中心,则阴影部分的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线,交CE的延长线于点F,且AF=BD,连接BF.

(1)求证:BD=CD;(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某景区商店以2元的批发价进了一批纪念品.经调查发现,每个定价3元,每天可以能卖出500件,而且定价每上涨0.1元,其销售量将减少10件.根据规定:纪念品售价不能超过批发价的2.5倍.

1)当每个纪念品定价为3.5元时,商店每天能卖出________件;

2)如果商店要实现每天800元的销售利润,那该如何定价?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人同时从相距25千米的A地去B地,甲骑摩托车,乙骑自行车,甲的速度是乙的速度的3倍,甲到达B地后停留了30分钟,然后从B地返回A地,在途中遇见了乙,此时距他们出发的时间刚好是1小时,则甲的速度是(  )

A. 20千米/小时 B. 60千米/小时

C. 25千米/小时 D. 75千米小时

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.

(1)求每套队服和每个足球的价格是多少?

(2)若城区四校联合购买100套队服和a个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;

(3)假如你是本次购买任务的负责人,你认为到哪家商场购买比较合算?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0)和B(3,0)两点,与y轴交于点C,对称轴与x轴交于点E,点D为顶点,连接BD、CD、BC.

(1)求证△BCD是直角三角形;
(2)点P为线段BD上一点,若∠PCO+∠CDB=180°,求点P的坐标;
(3)点M为抛物线上一点,作MN⊥CD,交直线CD于点N,若∠CMN=∠BDE,请直接写出所有符合条件的点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,△ACB和△ECD都是等腰直角三角形,∠ACB=ECD=90°,DAB边上一点.

(1)求证:△ACE≌△BCD;

(2)AD=5,BD=12,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:在等腰直角三角形中,AB=AC,点D是斜边BC上的中点,点E、F分别为AB,AC上的点,且DE⊥DF。(1)若设,满足.

(1)求BE及CF的长。

(2)求证:

(3)(1)的条件下,求△DEF的面积。

查看答案和解析>>

同步练习册答案