精英家教网 > 初中数学 > 题目详情

【题目】问题提出:如图1,在Rt△ABC中,∠ACB=90°,CB=4,CA=6,⊙C半径为2,P为圆上一动点,连结AP、BP,求AP+BP的最小值.

(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP,在CB上取点D,使CD=1,则有,又∵∠PCD=∠BCP,∴△PCD∽△BCP.∴,∴PD=BP,∴AP+BP=AP+PD.

请你完成余下的思考,并直接写出答案:AP+BP的最小值为   

(2)自主探索:在“问题提出”的条件不变的情况下,AP+BP的最小值为   

(3)拓展延伸:已知扇形COD中,∠COD=90°,OC=6,OA=3,OB=5,点P是上一点,求2PA+PB的最小值.

【答案】1;(2;(313

【解析】

试题(1)连结AD,最短为AD==

2)连接CP,在CA上取点D,使CD,则有,可证△PCD∽△ACP,得到PDAP,故APBPBPPD,从而APBP的最小值为BD

3)延长OA到点E,使CE6,连接PEOP,可证△OAP∽△OPE,得到EP2PA,得到2PAPBEPPB,当EPB三点共线时,得到最小值.

试题解析:(1)连结AD,最短为AD==

2)连接CP,在CA上取点D,使CD,则有,又∵∠PCD∠ACP∴△PCD∽△ACP∴PDAPAPBPBPPDAPBP的最小值为BD==

3)延长OA到点E,使CE6,连接PEOP,则OA=3∵∠AOP=∠AOP∴△OAP∽△OPE∴EP2PA∴2PAPBEPPB,当EPB三点共线时,取得最小值,为:=13

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知函数yx+2的图象与函数yk≠0)的图象交于AB两点,连接BO并延长交函数yk≠0)的图象于点C,连接AC,若ABC的面积为8.则k的值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F.

(1)试判断直线BC与⊙O的位置关系,并说明理由;

(2)若BD=2,BF=2,求阴影部分的面积(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】等腰三角形ABC中,AB=ACDE分别是ACAB上两点,连结BDCEBD=CE,且BC>BD∠A=48°∠BCE=36°,则∠ADB的度数等于________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,一次函数y=kx+b与反比例函数y=的图象交于A(2,4),B(﹣4,n)两点.

(1)分别求出一次函数与反比例函数的表达式;

(2)过点BBCx轴,垂足为点C,连接AC,求ACB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校九年级开展征文活动,征文主题只能从爱国”“敬业”“诚信”“友善四个主题选择一个,九年级每名学生按要求都上交了一份征文,学校为了解选择各种征文主题的学生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.

(1)求共抽取了多少名学生的征文;

(2)将上面的条形统计图补充完整;

(3)在扇形统计图中,选择爱国主题所对应的圆心角是多少;

(4)如果该校九年级共有1200名学生,请估计选择以友善为主题的九年级学生有多少名.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图.在平行四边形ABCD中,过点BBMAC于点E,交CD于点M,过点DDNAC于点F,交AB于点N

1)求证:四边形BMDN是平行四边形;

2)已知AF5EM3,求AN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC内接于⊙OAB是直径,点D在⊙O上,ODBC,过点DDEAB,垂足为E,连接CDOE边于点F

1)求证:DOE∽△ABC

2)求证:∠ODF=BDE

3)连接OC.设DOE的面积为SsinA=,求四边形BCOD的面积(用含有S的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.

(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为________;

(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解)

查看答案和解析>>

同步练习册答案