精英家教网 > 初中数学 > 题目详情

【题目】如图.在平行四边形ABCD中,过点BBMAC于点E,交CD于点M,过点DDNAC于点F,交AB于点N

1)求证:四边形BMDN是平行四边形;

2)已知AF5EM3,求AN的长.

【答案】(1)详见解析;(2)

【解析】

1)只要证明DNBMDMBN即可;

2)只要证明CEM≌△AFN,可得FNEM3,在RtAFN中,根据勾股定理AN即可解决问题.

1)∵四边形ABCD是平行四边形,

CDAB

BMACDNAC

DNBM

∴四边形BMDN是平行四边形;

2)∵四边形BMDN是平行四边形,

DMBN

CDABCDAB

CMAN,∠MCE=∠NAF

∵∠CEM=∠AFN90°

∴△CEM≌△AFN

FNEM3

RtAFN中,AN

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,⊙O是△ABC的外接圆,AE平分∠BAC⊙O于点E,∠ABC的平分线BFAD于点F,交BC于点D

1)求证:BEEF

2)若DE4DF3,求AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y1ax2+b经过C(﹣24),D(﹣44)两点.

1)求抛物线y1的函数表达式;

2)将抛物线y1沿x轴翻折,再向右平移,得到抛物线y2,与y2轴交于点F,点E为抛物线2上一点,要使以CD为边,CDEF四点为顶点的四边形为平行四边形,求所有满足条件的抛物线y2的函表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题提出:如图1,在Rt△ABC中,∠ACB=90°,CB=4,CA=6,⊙C半径为2,P为圆上一动点,连结AP、BP,求AP+BP的最小值.

(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP,在CB上取点D,使CD=1,则有,又∵∠PCD=∠BCP,∴△PCD∽△BCP.∴,∴PD=BP,∴AP+BP=AP+PD.

请你完成余下的思考,并直接写出答案:AP+BP的最小值为   

(2)自主探索:在“问题提出”的条件不变的情况下,AP+BP的最小值为   

(3)拓展延伸:已知扇形COD中,∠COD=90°,OC=6,OA=3,OB=5,点P是上一点,求2PA+PB的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,过点A的直线l分别与x轴、y轴交于点CD

1)求直线l的函数表达式.

2Px轴上一点,若PCD为等腰三角形直接写出点P的坐标.

3)将线段ABB点旋转90°,直接写出点A对应的点A的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,反比例函数的图象与一次函数的图象交于点、点.

1)求一次函数和反比例函数的解析式;

2)求的面积;

3)直接写出一次函数值大于反比例函数值的自变量的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,点A-2m)绕坐标原点O顺时针旋转90°后,恰好落在图中⊙P中的阴影区域(包括边界)内,⊙P的半径为1,点P的坐标为(32),则m的取值范围是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校开展以素质提升为主题的研学活动,推出了以下四个项目供学生选择:A.模拟驾驶;B.军事竞技;C.家乡导游;D.植物识别.学校规定:每个学生都必须报名且只能选择其中一个项目.八年级(3)班班主任刘老师对全班学生选择的项目情况进行了统计,并绘制了如下两幅不完整的统计图.请结合统计图中的信息,解决下列问题:

(1)八年级(3)班学生总人数是   ,并将条形统计图补充完整;

(2)刘老师发现报名参加植物识别的学生中恰好有两名男生,现准备从这些学生中任意挑选两名担任活动记录员,请用列表或画树状图的方法,求恰好选中1名男生和1名女生担任活动记录员的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了了解学生的安全意识,在全校范围内随机抽取部分学生进行问卷调查.根据调查结果,把学生的安全意识分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下两幅尚不完整的统计图.

根据以上信息,解答下列问题:

1)这次调查一共抽取了   名学生,将条形统计图补充完整;

2)扇形统计图中,“较强”层次所占圆心角的大小为   °;

3)若该校有1800名学生,现要对安全意识为“淡薄”、“一般”的学生强化安全教育,根据调查结果,请你估计全校需要强化安全教育的学生人数.

查看答案和解析>>

同步练习册答案