【题目】如图,在平面直角坐标系中,过点A的直线l分别与x轴、y轴交于点C,D.
(1)求直线l的函数表达式.
(2)P为x轴上一点,若△PCD为等腰三角形直接写出点P的坐标.
(3)将线段AB绕B点旋转90°,直接写出点A对应的点A的坐标.
【答案】(1);(2)(﹣6,0),(﹣4,0),(16,0)或(﹣,0);(3)点A′的坐标为(0,﹣)或(8,).
【解析】
(1)由点A,B的坐标,利用待定系数法可求出直线l的函数表达式;
(2)利用一次函数图象上点的坐标特征可求出点C,D的坐标,进而可得出CD的长,分DC=DP,CD=CP,PC=PD三种情况考虑:①当DC=DP时,利用等腰三角形的性质可得出OC=OP1,进而可得出点P1的坐标;②当CD=CP时,由CP的长度结合点C的坐标可得出点P2,P3的坐标;③当PC=PD时,设OP4=m,利用勾股定理可得出关于m的一元一次方程,解之即可得出m的值,进而可得出点P4的坐标.综上,此问得解;
(3)过点B作直线l的垂线,交y轴于点E,则△DOC∽△DBE,利用相似三角形的性质可求出点E的坐标,由点B,E的坐标,利用待定系数法可求出直线BE的函数表达式,设点A′的坐标为(n,n﹣),由A′B=AB可得出关于n的一元二次方程,解之即可得出点A′的坐标,此题得解.
(1)设直线l的函数表达式为y=kx+b(k≠0),
将A(1,),B(4,)代入y=kx+b,
得:,解得:,
∴直线l的函数表达式为y=﹣x+8.
(2)当x=0时,y=﹣x+8=8,
∴点D的坐标为(0,8);
当y=0时,﹣x+8=0,
解得:x=6,
∴点C的坐标为(6,0),
∴CD=10.
分三种情况考虑(如图1所示):
①当DC=DP时,OC=OP1,
∴点P1的坐标为(﹣6,0);
②当CD=CP时,CP=10,
∴点P2的坐标为(﹣4,0),点P3的坐标为(16,0);
③当PC=PD时,设OP4=m,
∴(6+m)2=82+m2,
解得:m=,
∴点P4的坐标为(﹣,0).
综上所述:点P的坐标为(﹣6,0),(﹣4,0),(16,0)或(﹣,0).
(3)过点B作直线l的垂线,交y轴于点E,如图2所示,
∵点B(4,),点D(0,8),
∴BD==,
∵∠CDO=∠EDB,∠DOC=∠DBE=90°,
∴△DOC∽△DBE,
∴,即,
∴DE=,
∴点E的坐标为(0,﹣).
利用待定系数法可求出直线BE的函数表达式为y=x﹣,
设点A′的坐标为(n, n﹣),
∵A′B=AB,
∴(4﹣n)2+[﹣(n﹣)]2=(4﹣1)2+(﹣)2,
即n2﹣8n=0,
解得:n1=0,n2=8,
∴点A′的坐标为(0,﹣)或(8,).
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,函数y(x>0)的图象与直线y=2x+1交于点A(1,m)
(1)求k,m的值;
(2)已知点P(0,n)(n>0),过点P作平行于x轴的直线,交直线y=2x+1于点B,交函数y(x>0)的图象于点C.横、纵坐标都是整数的点叫做整点.
①当n=1时,写出线段BC上的整点的坐标;
②若y(x>0)的图象在点A,C之间的部分与线段AB,BC所围成的区域内(包括边界)恰有6个整点,直接写出n的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学为了解七年级学生喜欢球类活动的情况,采取抽样调查的方法,从足球、乒乓球、篮球、排球等四个方面随机调查了部分七年级学生的兴趣爱好,根据调查的结果组建了个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:
(1)求被抽查学生人数,将条形统计图补充完整;
(2)求出扇形统计图中,排球部分对应的圆心角度数;
(3)如果该中学七年级共有名学生,请你估计七年级学生中喜欢排球的学生有多少名?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC是等腰三角形,AB=AC.
(1)特殊情形:如图1,当DE∥BC时,有DB EC.(填“>”,“<”或“=”)
(2)发现探究:若将图1中的△ADE绕点A顺时针旋转α(0°<α<180°)到图2位置,则(1)中的结论还成立吗?若成立,请给予证明;若不成立,请说明理由.
(3)拓展运用:如图3,P是等腰直角三角形ABC内一点,∠ACB=90°,且PB=1,PC=2,PA=3,求∠BPC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知,⊙O是△ABC的外接圆,AB=AC=10,BC=12,连接AO并延长交BC于点H.
(1)求外接圆⊙O的半径;
(2)如图2,点D是AH上(不与点A,H重合)的动点,以CD,CB为边,作平行四边形CDEB,DE分别交⊙O于点N,交AB边于点M.
①连接BN,当BN⊥DE时,求AM的值;
②如图3,延长ED交AC于点F,求证:NM·NF=AM·MB;
③设AM=x,要使-2<0成立,求x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,BD=24,在菱形ABCD的外部以AB为边作等边三角形 ABE.点F是对角线BD上一动点(点F不与点B重合),将线段AF绕点A顺时针方向旋转60°得到线段AM,连接FM.
(1)求AO的长;
(2)如图2,当点F在线段BO上,且点M,F,C三点在同一条直线上时,求证:AC=AM;
(3)连接EM,若△AEM的面积为40,请直接写出△AFM的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市去年成功举办2018郴州国际休闲旅游文化节,获评“全国森林旅游示范市”.某市有A,B,C,D,E五个景区很受游客喜爱.一旅行社对某小区居民在暑假期间去以上五个景区旅游(只选一个景区)的意向做了一次随机调查统计,并根据这个统计结果制作了如下两幅不完整的统计图:
(1)该小区居民在这次随机调查中被调查到的人数是 人, ,并补全条形统计图;
(2)若该小区有居民1200人,试估计去B地旅游的居民约有多少人?
(3)小军同学已去过E地旅游,暑假期间计划与父母从A,B,C,D四个景区中,任选两个去旅游,求选到A,C两个景区的概率.(要求画树状图或列表求概率)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,直线l1:y=k1x+b过A(0,﹣3),B(5,2),直线l2:y=k2x+2.
(1)求直线l1的表达式;
(2)当x≥4时,不等式k1x+b>k2x+2恒成立,请写出一个满足题意的k2的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为进一步深化基教育课程改革,构建符合素质教育要求的学校课程体系,某学校自主开发了A书法、B阅读,C足球,D器乐四门校本选修课程供学生选择,每门课程被选到的机会均等.
(1)学生小红计划选修两门课程,请写出所有可能的选法;
(2)若学生小明和小刚各计划送修一门课程,则他们两人恰好选修同一门课程的概率为多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com