精英家教网 > 初中数学 > 题目详情

【题目】已知△ABC是等腰三角形,AB=AC

1)特殊情形:如图1,当DE∥BC时,有DB EC.(填“=”

2)发现探究:若将图1中的△ADE绕点A顺时针旋转αα180°)到图2位置,则(1)中的结论还成立吗?若成立,请给予证明;若不成立,请说明理由.

3)拓展运用:如图3P是等腰直角三角形ABC内一点,∠ACB=90°,且PB=1PC=2PA=3,求∠BPC的度数.

【答案】1=;(2)成立,证明见解析;(3135°.

【解析】

试题(1)由DE∥BC,得到,结合AB=AC,得到DB=EC

2)由旋转得到的结论判断出△DAB≌△EAC,得到DB=CE

3)由旋转构造出△CPB≌△CEA,再用勾股定理计算出PE,然后用勾股定理逆定理判断出△PEA是直角三角形,在简单计算即可.

试题解析:(1∵DE∥BC

∵AB=AC

∴DB=EC

故答案为=

2)成立.

证明:由易知AD=AE

由旋转性质可知∠DAB=∠EAC

∵AD=AEAB=AC

∴△DAB≌△EAC

∴DB=CE

3)如图,

△CPB绕点C旋转90°△CEA,连接PE

∴△CPB≌△CEA

∴CE=CP=2AE=BP=1∠PCE=90°

∴∠CEP=∠CPE=45°

Rt△PCE中,由勾股定理可得,PE=

△PEA中,PE2=2=8AE2=12=1PA2=32=9

∵PE2+AE2=AP2

∴△PEA是直角三角形

∴∠PEA=90°

∴∠CEA=135°

∵△CPB≌△CEA

∴∠BPC=∠CEA=135°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】一带一路倡议提出五年多来,交通、通信、能源等各项相关建设取得积极进展,也为增进各国民众福祉提供了新的发展机遇.下图是2017一年一路沿线部分国家的通信设施现状统计图.

根据统计图提供的信息,下列推断合理的是( ).

A.互联网服务器拥有个数最多的国家是阿联酋

B.宽带用户普及率的中位数是11.05%

C.8个国家的电话普及率能够达到平均每人1

D.只有俄罗斯的三项指标均超过了相应的中位数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知⊙O及⊙O外一点P

1)方法证明:如何用直尺和圆规过点P作⊙O的一条切线呢?小明设计了如图①所示的方法:

①连接OP,以OP为直径作⊙O

②⊙O与⊙O相交于点A,作直线PA

则直线PA即为所作的过点P的⊙O的一条切线.

请证明小明作图方法的正确性.

2)方法迁移:如图②,已知线段l,过点P作一条直线与⊙O相交,且该直线被⊙O所截得的弦长等于l.(保留作图痕迹,不要求写作法和证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】反比例函数在第一象限的图象如图所示,过上任意一点,作轴垂线交于点,交轴于点,作轴垂线,交于点,交轴于点,直线分别交轴,轴于点,则__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,将ABO绕点A顺指针旋转到AB1C1的位置,点BO分别落在点B1C1处,点B1x轴上,再将AB1C1绕点B1顺时针旋转到A1B1C2的位置,点C2x轴上,将A1B1C2绕点C2顺时针旋转到A2B2C2的位置,点A2x轴上,依次进行下去,若点A0)、B04),则点B2020的横坐标为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,在Rt△ABCRt△DEF中,ACB=EDF=90°A=30°E=45°AB=EF=6,如图1D是斜边AB的中点,将等腰Rt△DEF绕点D顺时针方向旋转角α0°<α<90°),在旋转过程中,直线DEAC相交于点M,直线DFBC相交于点N

1)如图1,当α=60°时,求证:DM=BN

2)在上述旋转过程中,的值是一个定值吗?请在图2中画出图形并加以证明;

3)如图3,在上述旋转过程中,当点C落在斜边EF上时,求两个三角形重合部分四边形CMDN的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,过点A的直线l分别与x轴、y轴交于点CD

1)求直线l的函数表达式.

2Px轴上一点,若PCD为等腰三角形直接写出点P的坐标.

3)将线段ABB点旋转90°,直接写出点A对应的点A的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直角三角形的直角顶点在坐标原点,OAB=30°,若点A在反比例函数y=(x>0)的图象上,则经过点B的反比例函数解析式为(  )

A. y=﹣ B. y=﹣ C. y=﹣ D. y=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知一次函数ykxb的图象交反比例函数yx0)的图象于点AB,交x轴于点C

1)求m的取值范围;

2)若点A的坐标是(2,-4),且,求m的值和一次函数的解析式.

查看答案和解析>>

同步练习册答案