精英家教网 > 初中数学 > 题目详情

【题目】佳佳向探究一元三次方程x3+2x2﹣x﹣2=0的解的情况,根据以往的学习经验,他想到了方程与函数的关系,一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b(k≠0)的解,二次函数y=ax2+bx+c(a≠0)的图象与x轴交点的横坐标即为一元二次方程ax2+bx+c=0(a≠0)的解,如:二次函数y=x2﹣2x﹣3的图象与x轴的交点为(﹣1,0)和(3,0),交点的横坐标﹣1和3即为x2﹣2x﹣3=0的解. 根据以上方程与函数的关系,如果我们直到函数y=x3+2x2﹣x﹣2的图象与x轴交点的横坐标,即可知方程x3+2x2﹣x﹣2=0的解.
佳佳为了解函数y=x3+2x2﹣x﹣2的图象,通过描点法画出函数的图象.

x

﹣3

﹣2

﹣1

0

1

2

y

﹣8

0

m

﹣2

0

12


(1)直接写出m的值,并画出函数图象;
(2)根据表格和图象可知,方程的解有个,分别为
(3)借助函数的图象,直接写出不等式x3+2x2>x+2的解集.

【答案】
(1)解:由题意m=﹣1+2+1﹣2=0.

函数图象如图所示.


(2)3;﹣2,或﹣1或1
(3)解:不等式x3+2x2>x+2的解集,即为函数y=x3+2x2﹣x﹣2的函数值大于0的自变量的取值范围.

观察图象可知,﹣2<x<﹣1或x>1


【解析】解:(1)由题意m=﹣1+2+1﹣2=0.

函数图象如图所示.

;(2)根据表格和图象可知,方程的解有3个,分别为﹣2,或﹣1或1.

所以答案是3,﹣2,或﹣1或1.

【考点精析】关于本题考查的二次函数的图象和抛物线与坐标轴的交点,需要了解二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点;一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】1)根据下表回答:

1

1.7

1.73

1.74

1.8

2

1

2.89

2.9929

3.0276

3.24

4

的平方根是_____________

②由表可知,在表中哪两个相邻的数之间(小数部分是两位小数)?

2)如图,在平面直角坐标系中,已知三点

①三角形的面积是_______

②分别将三点的横坐标乘,纵坐标加,记坐标变换后所对的点分别为在坐标系中画出以这三点为顶点的三角形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AB=AC,∠BAC=90°,点D在线段BC上,∠EDB=∠C,BE⊥DE,垂足为E,DE与AB相交于点F.试探究线段BE与DF的数量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,已知直线l1l2,且l3l1l2分别相交于AB两点,l4l1l2分别交于CD两点,∠ACP1BDP2CPD3

P在线段AB

(1)若∠122°233°,则∠3________

(2)试找出∠123之间的等量关系,并说明理由;

(3)应用(2)中的结论解答下列问题

如图②AB处北偏东40°的方向上,在C处的北偏西45°的方向上,求∠BAC的度数;

(4)如果点P在直线l3上且在AB两点外侧运动时,其他条件不变,试探究∠123之间的关系(PAB两点不重合),直接写出结论即可.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费,为更好地做决策,自来水公司随机抽取部分用户的用水量数据,并绘制了如图不完整的统计图(每组数据包括右端点但不包括左端点),请你根据统计图解决下列问题:

(1)此次抽样调查的样本容量是
(2)补全频数分布直方图.
(3)如果自来水公司将基本用水量定为每户25吨,那么该地区6万用户中约有多少用户的用水全部享受基本价格?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有一转盘中有A、B两个区域,A区域所对的圆心角为120°,让转盘自由转动两次.利用树状图或列表求出两次指针都落在A区域的概率。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,P是CD边上一点,且AP和BP分别平分∠DAB和∠CBA,若AD=5,AP=8,则△APB的周长是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC中,∠C=90°,AC=3,BC=4,P是斜边AB上一动点(不与点A、B重合),PQ⊥AB交△ABC的直角边于点Q,设AP为x,△APQ的面积为y,则下列图象中,能表示y关于x的函数关系的图象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,过原点O的直线与双曲线y= 交于A、B两点,过点B作BC⊥x轴,垂足为C,连接AC,若S△ABC=5,则k的值是(
A.
B.
C.5
D.10

查看答案和解析>>

同步练习册答案