【题目】如图,在△ABC中,AB=AC=4,∠BAC=120°,M是BC的中点,点E是AB边上的动点,点F是线段BM上的动点,则ME+EF的最小值等于___.
【答案】3
【解析】
连接AM,作点M关于AB的对称点D,连接BD,DE,依据勾股定理,即可得到BD=BM=2,再根据当点D,E,F三点共线,且DF⊥BC时,EF+EM的最小值等于DF的长,利用勾股定理求得DF的长,即可得到ME+EF的最小值.
如图,连接AM,
∵AB=AC=4,∠BAC=120°,M是BC的中点,
∴AM⊥BC,AM=AB=2,
∴Rt△ABM中,BM==2,
作点M关于AB的对称点D,连接BD,DE,则BD=BM=2,DE=ME,
当点D,E,F三点共线,且DF⊥BC时,EF+EM的最小值等于DF的长,
此时,Rt△BDF中,∠DBF=60°,∠D=30°,
∴BF=,
∴DF==3,
∴ME+EF的最小值等于3,
故答案为:3.
科目:初中数学 来源: 题型:
【题目】下列说法错误的是( ).
A.在一个角的内部(包括顶点)到角的两边距离相等的点的轨迹是这个角的平分线
B.到点距离等于的点的轨迹是以点为圆心,半径长为的圆
C.到直线距离等于的点的轨迹是两条平行于且与的距离等于的直线
D.等腰三角形的底边固定,顶点的轨迹是线段的垂直平分线
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,O是△ABC的内心,以O为圆心,r为半径的圆与线段AB有交点,则r的取值范围是( )
A.r≥1 B.1≤r≤ C.1≤r≤ D.1≤r≤4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另一个根的三倍,则称这样的方程为“3倍根方程”,以下说法不正确的是( )
A. 方程x2﹣4x+3=0是3倍根方程
B. 若关于x的方程(x﹣3)(mx+n)=0是3倍根方程,则m+n=0
C. 若m+n=0且m≠0,则关于x的方程(x﹣3)(mx+n)=0是3倍根方程
D. 若3m+n=0且m≠0,则关于x的方程x2+(m﹣n)x﹣mn=0是3倍根方程
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我县古田镇某纪念品商店在销售中发现:“成功从这里开始”的纪念品平均每天可售出20件,每件盈利40元.为了扩大销售量,增加盈利,尽快减少库存,该商店在今年国庆黄金周期间,采取了适当的降价措施,改变营销策略后发现:如果每件降价4元,那么平均每天就可多售出8件.商店要想平均每天在销售这种纪念品上盈利1200元,那么每件纪念品应降价多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】四边形ABCD中,点E在边AB上,连结DE,CE.
(1)若∠A=∠B=∠DEC=50°,找出图中的相似三角形,并说明理由;
(2)若四边形ABCD为矩形,AB=5,BC=2,且图中的三个三角形都相似,求AE的长.
(3)若∠A=∠B=90°,AD<BC,图中的三个三角形都相似,请判断AE和BE的数量关系并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A、C的坐标分别为(0,8)、(6,0),以AC为直径作⊙O,交坐标轴于点B,点D是⊙O 上一点,且,过点D作DE⊥BC,垂足为E.
(1)求证:CD平分∠ACE;
(2)判断直线ED与⊙O的位置关系,并说明理由;
(3)求线段CE的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com