【题目】如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另一个根的三倍,则称这样的方程为“3倍根方程”,以下说法不正确的是( )
A. 方程x2﹣4x+3=0是3倍根方程
B. 若关于x的方程(x﹣3)(mx+n)=0是3倍根方程,则m+n=0
C. 若m+n=0且m≠0,则关于x的方程(x﹣3)(mx+n)=0是3倍根方程
D. 若3m+n=0且m≠0,则关于x的方程x2+(m﹣n)x﹣mn=0是3倍根方程
【答案】B
【解析】
通过解一元方程可对A进行判断;先解方程得到x1=3,x2=- ,然后通过分类讨论得到m和n的关系,则可对B进行判断;先解方程,则利用m+n=0可判断两根的关系,则可对C进行判断;先解方程,则利用3m+n=0可判断两根的关系,则可对D进行判断.
A. 解方程4x+3=0得x1=1, x2=3,所以A选项的说法正确;
B. 解方程得x1=3, x2=-,当=3×3,则9m+n=0;当=×3,则m+n=0,所以B选项的说法错误;
C. 解方程得x1=3, x2=,而m+n=0,则x2=1,所以C选项的说法正确;
D. 解方程得x1=m, x2=n,而3m+n=0,即n=3m,所以x1=3 x2,所以D选项的说法正确.
故选B.
科目:初中数学 来源: 题型:
【题目】如图,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)交于A,B两点,且点A的横坐标是-2,点B的横坐标是3,则以下结论:
①抛物线y=ax2(a≠0)的图象的顶点一定是原点;
②x>0时,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)的函数值都随着x的增大而增大;
③AB的长度可以等于5;
④△OAB有可能成为等边三角形;
⑤当-3<x<2时,ax2+kx<b,
其中正确的结论是( )
A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,,,,分别是边,上的两个动点,其中点以每秒2个单位的速度由点向点运动;点以每秒3个单位的速度由点到点再到点运动;它们同时出发,当一个点到达终点停止,另一个点继续运动到终点也停止,设运动时间为秒。
(1)求的面积。
(2)当点在边上运动时,出发几秒后,是等腰三角形。
(3)当点在边上运动时,出发几秒后,是等腰三角形。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面材料,完成(1)-(3)题
数学课上,老师出示了这样一道题:如图,△ABD和△ACE中,AB=AD,AC=AE,∠DAB=∠CAE=α,连接DC、BE交于点F,过A作AG⊥DC于点G,探究线段FG、FE、FC之间的数量关系,并证明.
同学们经过思考后,交流了自已的想法:
小明:“通过观察和度量,发现线段BE与线段DC相等.”
小伟:“通过观察发现,∠AFE与α存在某种数量关系.”
老师:“通过构造全等三角形,从而可以探究出线段FG、FE、FC之间的数量关系.”
(1)求证:BE=CD;
(2)求∠AFE的度数(用含α的式子表示);
(3)探究线段FG、FE、FC之间的数量关系,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC=4,∠BAC=120°,M是BC的中点,点E是AB边上的动点,点F是线段BM上的动点,则ME+EF的最小值等于___.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图, AB∥CD, AC∥BD, AD与BC交于O, AE⊥BC于E, DF⊥BC于F, 那么图中全等的三角形有 ( )
A.5对B.6对C.7对D.8对
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点O在线段AB上,(不与端点A、B重合),以点O为圆心,OA的长为半径画弧,线段BP与这条弧相切与点P,直线CD垂直平分PB,交PB于点C,交AB于点D,在射线DC上截取DE,使DE=DB。已知AB=6,设OA=r。
(1)求证:OP∥ED;
(2)当∠ABP=30°时,求扇形AOP的面积,并证明四边形PDBE是菱形;
(3)过点O作OF⊥DE于点F,如图所示,线段EF的长度是否随r的变化而变化?若不变,直接写出EF的值;若变化,直接写出EF与r的关系。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com