【题目】阅读下面材料,完成(1)-(3)题
数学课上,老师出示了这样一道题:如图,△ABD和△ACE中,AB=AD,AC=AE,∠DAB=∠CAE=α,连接DC、BE交于点F,过A作AG⊥DC于点G,探究线段FG、FE、FC之间的数量关系,并证明.
同学们经过思考后,交流了自已的想法:
小明:“通过观察和度量,发现线段BE与线段DC相等.”
小伟:“通过观察发现,∠AFE与α存在某种数量关系.”
老师:“通过构造全等三角形,从而可以探究出线段FG、FE、FC之间的数量关系.”
(1)求证:BE=CD;
(2)求∠AFE的度数(用含α的式子表示);
(3)探究线段FG、FE、FC之间的数量关系,并证明.
【答案】(1)见解析;(2)∠AFE=;(3)EF=FC+2GF,见解析
【解析】
(1)由∠DAB=∠CAE=α,可得∠DAC=∠BAE,根据“SAS”可证△ADC≌△ABE,可得DC=BE;
(2)由△ADC≌△ABE可得∠AEF=∠ACD,即可证点A,点E,点C,点F四点共圆,可得∠AFE=∠ACE,根据等腰三角形的性质和三角形内角和定理可求∠AFE的度数;
(3)结论:EF=FC+2GF.由题意可得∠AFD==∠AFE,过点作AH⊥BE,可证△AGF≌△AHF,可得AG=AH,GF=HF,即可证Rt△AGC≌Rt△AHE,可得GC=HE,由EF﹣FC=2GF可得结论.
证明:(1)∵∠DAB=∠CAE=α,
∴∠DAC=∠BAE,且AD=AB,AC=AE
∴△ADC≌△ABE(SAS)
∴DC=BE.
(2)∵△ADC≌△ABE
∴∠AEF=∠ACD
∴点A,点E,点C,点F四点共圆
∴∠AFE=∠ACE
∵AC=AE,∠DAB=∠CAE=α
∴∠ACE=,
∴∠AFE=.
(3)结论:EF=FC+2GF.
理由:∵△ADC≌△ABE
∴∠ADC=∠ABE
∴点A,点D,点B,点F四点共圆
∴∠AFD=∠ABD
∵AB=AD,∠DAB=∠CAE=α
∴∠ABD=,
∴∠AFD=,
∴∠AFE=∠AFD
如图,过点作AH⊥BE,
∵∠AFE=∠AFD,∠AGF=∠AHF,AF=AF
∴△AGF≌△AHF(AAS)
∴AG=AH,GF=HF,
∵AG=AH,AE=AC
∴Rt△AGC≌Rt△AHE(HL)
∴GC=HE
∵EF﹣FC=HE+FH﹣FC=GC+FH﹣FC=GF+FC+FH﹣FC=2GF,
∴EF=FC+2GF.
科目:初中数学 来源: 题型:
【题目】如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另一个根的三倍,则称这样的方程为“3倍根方程”,以下说法不正确的是( )
A. 方程x2﹣4x+3=0是3倍根方程
B. 若关于x的方程(x﹣3)(mx+n)=0是3倍根方程,则m+n=0
C. 若m+n=0且m≠0,则关于x的方程(x﹣3)(mx+n)=0是3倍根方程
D. 若3m+n=0且m≠0,则关于x的方程x2+(m﹣n)x﹣mn=0是3倍根方程
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P在∠MON的角平分线上,过点P作OP的垂线交OM,ON于C、D,PA⊥OM.PB⊥ON,垂足分别为A、B,EP∥BD,则下列结论错误的是( )
A.CP=PDB.PA=PBC.PE=OED.OB=CD
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】四边形ABCD中,点E在边AB上,连结DE,CE.
(1)若∠A=∠B=∠DEC=50°,找出图中的相似三角形,并说明理由;
(2)若四边形ABCD为矩形,AB=5,BC=2,且图中的三个三角形都相似,求AE的长.
(3)若∠A=∠B=90°,AD<BC,图中的三个三角形都相似,请判断AE和BE的数量关系并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AD、AE分别是△ABC的中线、高,且AB=4cm,AC=3cm,请解答下列问题:
(1)△ABD与△ACD的面积大小有怎样的关系?并说明理由.
(2)△ABD与△ACD的周长之差是多少?
(3)当AE=2.5cm ,BC=6cm时,试求△ABD的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com