【题目】如图,在直角坐标系平面内,函数y=(x>0,m是常数)的图象经过A(1,4)、B(a,b),其中a>1,过点A作x轴的垂线,垂足为C,过点B作y轴的垂线,垂足为D,连接AD,AB,DC,CB.
(1)求反比例函数解析式;
(2)当△ABD的面积为S,试用a的代数式表示求S.
(3)当△ABD的面积为2时,判断四边形ABCD的形状,并说明理由.
【答案】(1)反比例函数解析式为y=;(2)S=2a﹣2;(3)四边形ABCD为菱形,理由见解析.
【解析】试题分析:(1)把A(1,4)代入y=,用待定系数法求解即可;
(2)把B(a,b)代入(1)中求得解析式中,求出b与a的关系,根据三角形的面积公式列式即可;
(3)把S=2代入(2)中的解析式中,求出a的值,可知四边形ABCD的对角线互相垂直平分,从而可证明四边形ABCD为菱形.
解:(1)把A(1,4)代入y=得m=1×4=4,
所以反比例函数解析式为y=;
(2)把B(a,b)代入y=得b=,
所以S=a(4﹣)=2a﹣2;
(3)四边形ABCD为菱形.理由如下:
当S=2时,2a﹣2=2,解得a=2,
所以AC与BD互相垂直平分,
所以四边形ABCD为菱形.
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2﹣2anx+an2+n+3的顶点P在一条定直线l上.
(1)直接写出直线l的解析式;
(2)对于任意非零实数a,存在确定的n的值,使抛物线与x轴有唯一的公共点,求此时n的值;
(3)当点P在x轴上时,抛物线与直线l的另一个交点Q,过点Q作x轴的平行线,交抛物线于点A,过点Q作y轴的平行线,交x轴于点B,求的值或取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为人们喜爱的交通工具.某汽车销售公司计划购进一批新能源汽车尝试进行销售,据了解2辆A型汽车、3辆B型汽气车的进价共计80万元;3辆A型汽车、2辆B型汽车的进价共计95万元。
(1)求A、B两种型号的汽车每辆进价分别为多少方元?
(2)若该公司计划正好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),请你帮助该公司设计购买方案;
(3)若该汽车销售公司销售1辆A型汽车可获利8000元,销售1辆B型汽车可获利5000元,在(2)中的购买方案中,假如这些新能源汽车全部售出,哪种方案获利最大?最大利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某测量小组为了测量山BC的高度,在地面A处测得山顶B的仰角45°,然后沿着坡度为i=1:的坡面AD走了200米达到D处,此时在D处测得山顶B的仰角为60°,求山高BC(结果保留根号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠ACB=90°,AC=BC=3cm,点D为AC边上一点(不与点A、C重合),以CD为边,在三角形内作矩形CDEF,在三角形外作正方形CDMN,且顶点E、F分别在边AB、BC上,连接CE.设AD的长为xcm,矩形EFMN的面积为y1cm2,△ACE的面积为y2cm2
(1)填空:y1与x的函数关系式是 ,y2与x的函数关系式是 ,自变量x的取值范围是 ;
(2)在平面直角坐标系中,画出这两个函数的图象;
(3)结合画出的函数图象,解决问题:当矩形EFNM的面积小于△ACE的面积时,x的取值范围是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市进货员预测一种应季水果能畅销市场,用3000元购进第一批这种水果,面市后果然供不应求,全部卖完,超市进货员又用1500元购进了第二批这种水果,但进价比第一批上涨了50%,若两批水果的平均价格为9元/kg
(1)求购进第一批该种水果的单价;
(2)第一批水果的销售单价为10元/kg,第二批水果的销售单价为15元/kg,但在第二批水果的销售过程中发现销量不好,超市决定第二批水果销售一定数量后将剩余水果按原售价的7折销售.要使两批水果全部销售后共获利不少于900元,问第二批水果按原销售单价至少销售多少千克?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(8分)如图,AC是ABCD的一条对角线,过AC中点O的直线分别交AD,BC于点E,F.
(1)求证:△AOE≌△COF;
(2)当EF与AC满足什么条件时,四边形AFCE是菱形?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点C为线段AB上一点,分别以AB、AC、CB为底作顶角为120°的等腰三角形,顶角顶点分别为D、E、F(点E、F在AB的同侧,点D在另一侧)
(1)如图1,若点C是AB的中点,则∠AED= ;
(2)如图2,若点C不是AB的中点
①求证:△DEF为等边三角形;
②连接CD,若∠ADC=90°,AB=3,请直接写出EF的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com