【题目】某超市进货员预测一种应季水果能畅销市场,用3000元购进第一批这种水果,面市后果然供不应求,全部卖完,超市进货员又用1500元购进了第二批这种水果,但进价比第一批上涨了50%,若两批水果的平均价格为9元/kg
(1)求购进第一批该种水果的单价;
(2)第一批水果的销售单价为10元/kg,第二批水果的销售单价为15元/kg,但在第二批水果的销售过程中发现销量不好,超市决定第二批水果销售一定数量后将剩余水果按原售价的7折销售.要使两批水果全部销售后共获利不少于900元,问第二批水果按原销售单价至少销售多少千克?
【答案】(1)购进第一批该种水果的单价为8元/千克;(2)第二批水果按原销售单价至少销售75千克
【解析】
(1)设购进第一批该种水果的单价为x元/千克,则购进第二批该种水果的单价为(1+50%)x元/千克,根据数量=总价÷单价,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)根据数量=总价÷单价可求出第一批及第二批购进该种水果的数量,设第二批水果按原销售单价销售了y千克,则打折销售了(125﹣y)千克,根据利润=销售收入﹣成本结合共获利不少于900元,即可得出关于y的一元一次不等式,解之取其中的最小值即可得出结论.
解:(1)设购进第一批该种水果的单价为x元/千克,则购进第二批该种水果的单价为(1+50%)x元/千克,
依题意,得:(3000+1500)÷9=
解得:x=8,
经检验,x=8是所列分式方程的解,且符合题意.
答:购进第一批该种水果的单价为8元/千克.
(2)第一批购进该种水果3000÷8=375(千克),
第二批购进该种水果1500÷[(1+50%)×8]=125(千克).
设第二批水果按原销售单价销售了y千克,则打折销售了(125﹣y)千克,
依题意,得:10×375+15y+15×0.7(125﹣y)﹣3000﹣1500≥900,
解得:y≥75.
答:第二批水果按原销售单价至少销售75千克.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,如图所示A(﹣2,1),B(﹣4,1),C(﹣1,4).
(1)△ABC向上平移一个单位,再向左平移一个单位得到△A1B1C1,那么C的对应点C1的坐标为_____;P点到△ABC三个顶点的距离相等,点P的坐标为______;
(2)△ABC关于第一象限角平分线所在的直线作轴对称变换得到△A2B2C2,那么点B的对应点B2的坐标为______;
(3)△A3B3C3是△ABC绕坐标平面内的Q点顺时针旋转得到的,且A3(1,0),B3(1,2),C3(4,﹣1),点Q的坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小颖根据学习函数的经验,对函数的图象与性质进行了探究,下面是小颖的探究过程,请你补充完整.
(1)列表:
x | … | -2 | -1 | 0 | 1 | 2 | 3 | 4 | … |
y | … | -2 | -1 | 0 | 1 | 0 | -1 | k | … |
①____;
②若,,,为该函数图象上不同的两点,则____;
(2)描点并画出该函数的图象;
(3)①根据函数图象可得:该函数的最大值为____;
②观察函数的图象,写出该图象的两条性质________________________;_____________________;
③已知直线与函数的图象相交,则当时,的取值范围为是____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系平面内,函数y=(x>0,m是常数)的图象经过A(1,4)、B(a,b),其中a>1,过点A作x轴的垂线,垂足为C,过点B作y轴的垂线,垂足为D,连接AD,AB,DC,CB.
(1)求反比例函数解析式;
(2)当△ABD的面积为S,试用a的代数式表示求S.
(3)当△ABD的面积为2时,判断四边形ABCD的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在一次数学活动课上,张明用17个边长为1的小正方形搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状),那么王亮至少还需要 个小立方体,王亮所搭几何体的表面积为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A、B是双曲线y=(k>0)上的点,A、B两点的横坐标分别是a、3a,线段AB的延长线交x轴于点C,若S△AOC=3.则k的值为( )
A. 2 B. 1.5 C. 4 D. 6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点.
(1)求y与x之间的函数关系式;
(2)直接写出当x>0时,不等式x+b>的解集;
(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC的一边AB上有一点P.
(1)能否在另外两边AC和BC上各找一点M、N,使得△PMN的周长最短.若能,请画出点M、N的位置,若不能,请说明理由;
(2)若∠ACB=40°,在(1)的条件下,求出∠MPN的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将□ABCD的边AB延长至点E,使AB=BE,连接BD,DE,EC,DE交BC于点O.
(1)求证:△ABD≌△BEC;
(2)若∠BOD=2∠A,求证:四边形BECD是矩形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com