【题目】如图,⊙O内切于Rt△ABC,点P、点Q分别在直角边BC、斜边AB上,PQ⊥AB,且PQ与⊙O相切,若AC=2PQ,则tan∠B的值为( )
A. B. C. D.
【答案】C
【解析】
设⊙O的半径是R,PE=PF=x,BQ=y,连接OD,OG,OF,OE,得出正方形CDOE和OGQF,推出OD=CD=CE=OE=GQ=QF=R,求出y=2R,x=R,根据锐角三角函数值求出即可.
解:
设⊙O的半径是R,PE=PF=x,BQ=y,
连接OD,OG,OF,OE,
∵⊙O内切于Rt△ABC,
∴∠ODC=∠OEC=90°=∠C,AD=AG,
∵OD=OE,
∴四边形CDOE是正方形,
∴OD=CD=CE=OE=R,
同理OG=GQ=FQ=OF=R,
则PQ=CP,AC=AQ,
∵PQ⊥AB,∠C=90°,
∴∠C=∠PQB=90°,
∵∠B=∠B,
∴△BQP∽△BCA,
根据BG=BE得:y+R=2y-R,
解得:y=2R,
在Rt△PQB中,由勾股定理得:PQ2+BQ2=BP2,
即(2R)2+(R+x)2=(4R-R-x)2,
解得:,
即PQ=,BQ=2R.
tanB=.
科目:初中数学 来源: 题型:
【题目】已知抛物线y=﹣x2+bx+c与直线y=﹣x+m相交于第一象限内不同的两点A(4,n),B(1,4),
(1)求此抛物线的解析式.
(2)抛物线上是否存点P,使直线OP将线段AB平分?若存在直接求出P点坐标;若不存在说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.
(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.
(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.
①求证:BD⊥CF;
②当AB=4,AD=时,求线段BG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD⊥CE 于点 D,AC 平分∠DAB.
(1) 求证:直线 CE 是⊙O 的切线;
(2) 若 AB=10,CD=4,求 BC 的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】水库大坝截面的迎水坡坡比(DE与AE的长度之比)为1:0.6,背水坡坡比为1:2,大坝高DE=30米,坝顶宽CD=10米,求大坝的截面的周长和面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾斜角由45°降为30°,已知原滑滑板AB的长为5米,点D、B、C在同一水平地面上.若滑滑板的正前方能有3米长的空地就能保证安全,原滑滑板的前方有6米长的空地,像这样改造是否可行?请说明理由.(参考数据:≈1.414,≈1.732,≈2.449)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线与直线交于点O(0,0),。点B是抛物线上O,A之间的一个动点,过点B分别作x轴、y轴的平行线与直线OA交于点C,E。
(1)求抛物线的函数解析式;
(2)若点C为OA的中点,求BC的长;
(3)以BC,BE为边构造条形BCDE,设点D的坐标为(m,n),求m,n之间的关系式。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b的图象与反比例函数y=的图象交于A、B两点.
(1)利用图中的条件,求反比例函数和一次函数的解析式.
(2)求△AOB的面积.
(3)根据图象直接写出使一次函数的值大于反比例函数的值的x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数学课上学习了圆周角的概念和性质:“顶点在圆上,两边与圆相交”,“同弧所对的圆周角相等”,小明在课后继续对圆外角和圆内角进行了探究.
下面是他的探究过程,请补充完整:
定义概念:顶点在圆外,两边与圆相交的角叫做圆外角,顶点在圆内,两边与圆相交的角叫做圆内角.如图1,∠M为所对的一个圆外角.
(1)请在图2中画出所对的一个圆内角;
提出猜想
(2)通过多次画图、测量,获得了两个猜想:一条弧所对的圆外角______这条弧所对的圆周角;一条弧所对的圆内角______这条弧所对的圆周角;(填“大于”、“等于”或“小于”)
推理证明:
(3)利用图1或图2,在以上两个猜想中任选一个进行证明;
问题解决
经过证明后,上述两个猜想都是正确的,继续探究发现,还可以解决下面的问题.
(4)如图3,F,H是∠CDE的边DC上两点,在边DE上找一点P使得∠FPH最大.请简述如何确定点P的位置.(写出思路即可,不要求写出作法和画图)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com