¾«Ó¢¼Ò½ÌÍøÈçͼ£¬ÒÑÖªÒ»´Îº¯Êýy=ax+b£¨a¡Ù0£©µÄͼÏóÓë·´±ÈÀýº¯Êýy=
k
x
£¨k£¾0£©µÄͼÏóÏཻÓÚA£¨1£¬
3
£©¡¢B£¨-3£¬-
3
3
£©Á½µã£¬ÇÒÓëxÖáÏཻÓÚµãC£®Á¬½ÓOA¡¢OB£®
£¨1£©ÇóÒ»´Îº¯ÊýÓë·´±ÈÀýº¯ÊýµÄ½âÎöʽ£»
£¨2£©Çó¡÷AOBµÄÃæ»ý£»
£¨3£©ÈôµãQΪ·´±ÈÀýº¯Êýy=
k
x
£¨k£¾0£©Í¼ÏóÉϵĶ¯µã£¬ÔÚxÖáµÄÕý°ëÖáÉÏÊÇ·ñ´æÔÚÒ»µãP£¬Ê¹µÃÒÔP¡¢Q¡¢OΪ¶¥µãµÄÈý½ÇÐÎÓë¡÷AOCÏàËÆ£¿Èô´æÔÚ£¬Çó³öËùÓзûºÏÌõ¼þµÄµãPµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©°ÑA£¬BµÄ×ø±ê´úÈë½âÎöʽ£¬ÀûÓôý¶¨ÏµÊý·¨¼´¿ÉÇó½â£»
£¨2£©ÇóµÃÒ»´Îº¯ÊýÓëxÖáµÄ½»µã£¬¸ù¾ÝS¡÷AOB=S¡÷AOC+S¡÷BOC¼´¿ÉÇó½â£»
£¨3£©¸ù¾ÝÈý½Çº¯Êý¼´¿ÉÈ·¶¨¡ÏACO=30¡ã£¬Åжϡ÷OACÊǵ׽ÇΪ30¡ãµÄµÈÑüÈý½ÇÐΣ¬×÷QH¡ÍxÖᣬHΪ´¹×㣬Rt¡÷QOHÖÐÀûÓÃÈý½Çº¯Êý¼´¿ÉÇóµÃQµÄ×ø±ê£®
È¡OP1=2OH=2
3
£¬Ôò¡ÏQP1O=30¡ã£®¹ýµãQ×÷¡ÏP2QO=30¡ã£¬½»xÖáÓÚµãP2£¬Ôò¡÷OP2Q¡×¡÷COA£®¸ù¾ÝË«ÇúÏߵĶԳÆÐÔ£¬¹Ê¿É½«¡÷AOCÈÆÔ­µãOÐýת180¡ã£¬µÃµ½¡÷Q¡äO P3£¬Óɴ˿ɵõã Q¡ä±ØÔÚË«ÇúÏß×óÖ§ÉÏ£¬µãP3ÔÚxÖáÕý°ëÖáÉÏ£®¼´¿ÉÇó½â£®
½â´ð£º½â£º£¨1£©¡ßÒ»´Îº¯ÊýÓë·´±ÈÀýº¯ÊýÏཻÓÚA¡¢BÁ½µã£¬
¡à
3
=a+b
-
3
3
=-3a+b
Óë
3
=
k
1
£¬¡à
a=
3
3
b=
2
3
3
£¬k=
3
£®£¨3·Ö£©
¡àËùÇóÒ»´Îº¯ÊýµÄ½âÎöʽÊÇy=
3
3
x+
2
3
3
£¬
ËùÇó·´±ÈÀýº¯ÊýµÄ½âÎöʽÊÇy=
3
x
£®£¨4·Ö£©

£¨2£©½â·¨£¨Ò»£©£ºÓÉÒ»´Îº¯Êýy=
3
3
x+
2
3
3
£¬Áîy=0£¬µÃx=-2£®
¡àµãCµÄ×ø±êÊÇ£¨-2£¬0£©£®£¨5·Ö£©
¡àS¡÷AOB=S¡÷AOC+S¡÷BOC=
1
2
¡Á2¡Á
3
+
1
2
¡Á2¡Á
3
3
£¨6·Ö£©=
4
3
3
£®£¨8·Ö£©
½â·¨£¨¶þ£©£º·Ö±ð¹ýµãA¡¢B×÷AE¡ÍxÖáÓÚE£¬BF¡ÍyÖáÓÚF£¬ÇÒ·Ö±ðÑÓ³¤ÏཻÓÚG£¬
¡àS¡÷AOB=S¡÷ABG-S¡÷BOF-S¡÷AOE-S¾ØÐÎOFGE=
1
2
BG•AG-
1
2
BF•OF-
1
2
OE•AE-OE•OF
=
1
2
¡Á4¡Á
4
3
3
-
1
2
¡Á3¡Á
3
3
-
1
2
¡Á1¡Á
3
-1¡Á
3
3
£¨6·Ö£©=
4
3
3
£®£¨8·Ö£©

£¨3£©ÉèÖ±ÏßAC½»yÖáÓÚµãD£¬
¡ßy=
3
3
x+
2
3
3
£¬¾«Ó¢¼Ò½ÌÍø
¡àOD=
2
3
3
£®
ÔÚRt¡÷CODÖУ¬
¡ßtan¡ÏDCO=
OD
OC
=
2
3
3
2
=
3
3
£¬
¡à¡ÏDCO=30¡ã£¬¼´¡ÏACO=30¡ã£®
ÔÚRt¡÷AOEÖУ¬
¡ßtan¡ÏAOE=
AE
OE
=
3
1
=
3
£¬
¡à¡ÏAOE=60¡ã£®¡à¡ÏOAC=¡ÏAOE-¡ÏACO=30¡ã£®
¡à¡÷OACÊǵ׽ÇΪ30¡ãµÄµÈÑüÈý½ÇÐΣ®£¨9·Ö£©
×÷¡ÏQOX=30¡ãÓë·´±ÈÀýº¯Êýy=
3
x
£¨x£¾0£©µÄͼÏó½»ÓÚµãQ£¬ÉèQ£¨m£¬
3
m
£©£¬
×÷QH¡ÍxÖᣬHΪ´¹×㣬
ÔÚRt¡÷QOHÖУ¬tan30¡ã=
3
m
m
£¬¡àm2=3£¬¡àm=
3
£¨È¡ÕýÊý£©¾«Ó¢¼Ò½ÌÍø
¡àQ(
3
£¬1)
£¨10·Ö£©
È¡OP1=2OH=2
3
£¬Ôò¡ÏQP1O=30¡ã£®
¡à¡÷P1QO¡×¡÷AOC£®¡àp1(2
3
£¬0)
£®£¨11·Ö£©
¹ýµãQ×÷¡ÏP2QO=30¡ã£¬½»xÖáÓÚµãP2£¬¡à¡÷OP2Q¡×¡÷COA£®
ÓÉ¡ÏQP2H=60¡ã£¬µÃ
QH
QP2
=sin60¡ã=
3
2
£¬
¡àP2Q=
2
3
3
£®¡àP2(
2
3
3
£¬0)
£®£¨12·Ö£©
¸ù¾ÝË«ÇúÏߵĶԳÆÐÔ£¬¹Ê¿É½«¡÷AOCÈÆÔ­µãOÐýת180¡ã£¬µÃµ½¡÷Q¡äO P3£¬Óɴ˿ɵõã Q¡ä±ØÔÚË«ÇúÏß×óÖ§ÉÏ£¬µãP3ÔÚxÖáÕý°ëÖáÉÏ£®
¡àQ¡ä(-1£¬-
3
)
£¬P3£¨2£¬0£©£®£¨14·Ö£©
×ÛÉÏËùÊö£¬ËùÓзûºÏÌõ¼þµÄµãµÄ×ø±ê·Ö±ðÊÇp1(2
3
£¬0)
£¬p2(
2
3
3
£¬0)
£¬P3£¨2£¬0£©£®
µãÆÀ£º´ËÌâÖ÷Òª¿¼²é·´±ÈÀýº¯ÊýµÄÐÔÖÊ£¬×¢Òâͨ¹ý½â·½³Ì×éÇó³ö½»µã×ø±ê£®Í¬Ê±Òª×¢ÒâÔËÓÃÊýÐνáºÏµÄ˼Ï룮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÒÑÖªÒ»´Îº¯Êýy1=kx+bµÄͼÏóÓë·´±ÈÀýº¯Êýy2=
ax
µÄͼÏó½»ÓÚA£¨2£¬4£©ºÍ¾«Ó¢¼Ò½ÌÍøB£¨-4£¬m£©Á½µã£®
£¨1£©ÇóÕâÁ½¸öº¯ÊýµÄ½âÎöʽ£»
£¨2£©Çó¡÷AOBµÄÃæ»ý£»
£¨3£©¸ù¾ÝͼÏóÖ±½Óд³ö£¬µ±y1£¾y2ʱ£¬xµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÒÑÖªÒ»´Îº¯Êýy=kx+bµÄͼÏóÓë·´±ÈÀýº¯Êýy=-
8x
µÄͼÏó½»ÓÚA£¬Bµã£¬ÇÒµãAµÄºá×ø±êºÍµãBµÄ×Ý×ø±ê¶¼ÊÇ-2£®Çó£º
£¨1£©ÇóA¡¢BÁ½µã×ø±ê£»
£¨2£©ÇóÒ»´Îº¯ÊýµÄ½âÎöʽ£»
£¨3£©¸ù¾ÝͼÏóÖ±½Óд³öʹһ´Îº¯ÊýµÄֵСÓÚ·´±ÈÀýº¯ÊýµÄÖµµÄxµÄÈ¡Öµ·¶Î§£®
£¨4£©Çó¡÷AOBµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Ð½®£©Èçͼ£¬ÒÑÖªÒ»´Îº¯Êýy1=kx+bÓë·´±ÈÀýº¯Êýy2=
mx
µÄͼÏó½»ÓÚA£¨2£¬4£©¡¢B£¨-4£¬n£©Á½µã£®
£¨1£©·Ö±ðÇó³öy1ºÍy2µÄ½âÎöʽ£»
£¨2£©Ð´³öy1=y2ʱ£¬xµÄÖµ£»
£¨3£©Ð´³öy1£¾y2ʱ£¬xµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÒÑÖªÒ»´Îº¯Êýy=k1x+b¾­¹ýA¡¢BÁ½µã£¬½«µãAÏòÉÏƽÒÆ1¸öµ¥Î»ºó¸ÕºÃÔÚ·´±ÈÀýº¯Êýy=
k2x
ÉÏ£®
£¨1£©Çó³öÒ»´Îº¯Êý½âÎöʽ£®
£¨2£©Çó³ö·´±ÈÀýº¯Êý½âÎöʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÒÑÖªÒ»´Îº¯Êýy=kx+bµÄͼÏó½»·´±ÈÀýº¯Êýy=
4-2m
x
µÄͼÏó½»ÓÚµãA¡¢B£¬½»xÖáÓÚµãC£®
£¨1£©ÇómµÄÈ¡Öµ·¶Î§£»
£¨2£©ÈôµãAµÄ×ø±êÊÇ£¨2£¬-4£©£¬ÇÒ
BC
AB
=
1
3
£¬ÇómµÄÖµºÍÒ»´Îº¯ÊýµÄ½âÎöʽ£»
£¨3£©¸ù¾ÝͼÏó£¬Ð´³öµ±·´±ÈÀýº¯ÊýµÄֵСÓÚÒ»´Îº¯ÊýµÄֵʱx µÄÈ¡Öµ·¶Î§£¿

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸