精英家教网 > 初中数学 > 题目详情

【题目】如图,已知△ABC内接于⊙O,AD、AE分别平分∠BAC和△BAC的外角∠BAF,且分别交圆于点D、F,连接DE,CD,DE与BC相交于点G.

(1)求证:DE是△ABC的外接圆的直径;

(2)设OG=3,CD=,求⊙O的半径.

【答案】1)见解析 (25

【解析】

试题(1)根据条件ADAE分别平分∠BAC△BAC的外角∠BAF,证明∠2+∠3=90°即可;

2)由∠1=∠2得出点D为弧BC的中点,从而得出DE垂直平分BC,连接BE,设圆的半径为r,然后证明△CDG∽△EBG,利用相似三角形的性质和勾股定理可求出r的值.

试题解析:(1)因为ADAE分别是∠BAC∠BAF的平分线

所以∠1=∠2∠BAC, ∠3=∠EAF∠BAF,

所以∠2∠3∠BAC∠BAF),

因为∠BAC∠BAF180°

所以∠2∠390°

所以∠EAD90°

所以DE是圆O的直径;

2)因为∠1=∠2,所以,又DE△ABC的外接圆的直径,所以DE垂直平分BC,连接BE,则∠BEG=∠DCG,又∠BGE=∠DGC,所以△CDG∽△EBG,所以,设圆的半径为r,所以,又BG=CG,所以,Rt△CDG中,由勾股定理可得:,解得r=5r=-2(舍去),所以r=5

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知在RtABC中,∠C=90°,A=30°,在直线AC上找点P,使ABP是等腰三角形,则∠APB的度数为_______________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题情境:将一副直角三角板(Rt△ABCRt△DEF)按图1所示的方式摆放,其中∠ACB=90°CA=CB∠FDE=90°OAB的中点,点D与点O重合,DF⊥AC于点MDE⊥BC于点N,试判断线段OMON的数量关系,并说明理由.

探究展示:小宇同学展示出如下正确的解法:

解:OM=ON,证明如下:

连接CO,则COAB边上中线,

∵CA=CB∴CO∠ACB的角平分线.(依据1

∵OM⊥ACON⊥BC∴OM=ON.(依据2

反思交流:

1)上述证明过程中的依据1”依据2”分别是指:

依据1

依据2

2)你有与小宇不同的思考方法吗?请写出你的证明过程.

拓展延伸:

3)将图1中的Rt△DEF沿着射线BA的方向平移至如图2所示的位置,使点D落在BA的延长线上,FD的延长线与CA的延长线垂直相交于点MBC的延长线与DE垂直相交于点N,连接OMON,试判断线段OMON的数量关系与位置关系,并写出证明过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在四边形ABCD中,AB//CD,∠B=∠D.

(1)求证:四边形ABCD为平行四边形;

(2)若点P为对角线AC上的一点,PE⊥AB于E,PF⊥AD于F,且PE=PF,求证:四边形ABCD是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】Rt△ABC中,AB=AC,点DBC中点.∠MDN=900∠MDN绕点D旋转,DMDN分别与边ABAC交于EF两点.下列结论

①(BE+CF)=BCAD·EF④AD≥EF⑤ADEF可能互相平分,

其中正确结论的个数是( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P是平行四边形ABCD对角线BD上的动点,点MAD的中点,已知AD=8,AB=10,ABD=45°,把平行四边形ABCD绕着点A按逆时针方向旋转,点P的对应点是点Q,则线段MQ的长度的最大值与最小值的差为__

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在△ACB和△AED中,AC=BC,AE=DE,∠ACB=∠AED=90°,点E在AB上,F是线段BD的中点,连接CE、FE.

(1)若AD=3,BE=4,求EF的长;

(2)求证:CE=EF;

(3)将图1中的△AED绕点A顺时针旋转,使AED的一边AE恰好与△ACB的边AC在同一条直线上(如图2),连接BD,取BD的中点F,问(2)中的结论是否仍然成立,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知:MON=30o,点A1、A2、A3 在射线ON上,点B1、B2、B3…..在射线OM上,A1B1A2. A2B2A3A3B3A4……均为等边三角形,若OA1=l,则A6B6A7 的边长为【 】

A.6 B.12 C.32 D.64

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD中,AB=1,∠A=60°EFGH是矩形,矩形的顶点都在菱形的边上.设AE=AH=x0x1),矩形的面积为S

1)求S关于x的函数解析式;

2)当EFGH是正方形时,求S的值.

查看答案和解析>>

同步练习册答案