【题目】如图,点P是平行四边形ABCD对角线BD上的动点,点M为AD的中点,已知AD=8,AB=10,∠ABD=45°,把平行四边形ABCD绕着点A按逆时针方向旋转,点P的对应点是点Q,则线段MQ的长度的最大值与最小值的差为__.
【答案】18﹣5
【解析】
作AP1⊥BD垂足为P1,当AP1旋转到与射线AD重合时(点P1与点E重合),ME就是MQ最小值;当点P2与B重合时,旋转到与DA的延长线重合时(点P2与点F重合),此时MF就是MQ最大值,分别求出MQ的最大值与最小值即可得解.
如图作AP1⊥BD垂足为P1,∵DBA=45°,AB=10,∴∠P1AB=∠DBA=45°,AP1=P1B=5,∵AM=MD=AD=4,当AP1旋转到与射线AD重合时(点P1与点E重合),ME就是MQ最小值=5-4,当点P2与B重合时,旋转到与DA的延长线重合时(点P2与点F重合),此时MF就是MQ最大值=AM+AF=AM+AB=4+10=14,∴MQ的最大值与最小值的差=14-(5-4)=18-5,故答案为18-5.
科目:初中数学 来源: 题型:
【题目】如图,一块直角三角形的纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于( ).
A. 2 cm B. 4 cm C. 3 cm D. 5 cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,双曲线(x>0)上有一点A(1,5),过点A的直线y=mx+n与x轴交于点C(6,0).
(1)求反比例函数和一次函数的解析式;
(2)连接OA、OB,求△AOB的面积;
(3)根据图象直接写出在第一象限内反比例函数值大于一次函数值时x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出t的值,如果不能,说明理由;
(3)在运动过程中,四边形BEDF能否为正方形?若能,求出t的值;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC内接于⊙O,AD、AE分别平分∠BAC和△BAC的外角∠BAF,且分别交圆于点D、F,连接DE,CD,DE与BC相交于点G.
(1)求证:DE是△ABC的外接圆的直径;
(2)设OG=3,CD=,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在边AB上的点D处,已知MN∥AB,MC=6,NC=2,则四边形MABN的面积是___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司经营甲、乙两种商品,两种商品的进价和售价情况如下表:
进价(万元/件) | 售价(万元/件) | |
甲 | 12 | 14.5 |
乙 | 8 | 10 |
两种商品的进价和售价始终保持不变.现准备购进甲、乙两种商品共20件.设购进甲种商品件,两种商品全部售出可获得利润为万元.
(1)与的函数关系式为__________________;
(2)若购进两种商品所用的资金不多于200万元,则该公司最多购进多少合甲种商品?
(3)在(2)的条件下,请你帮该公司设计一种进货方案,使得该公司获得最大利润,并求出最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为3,延长CB至点M,使S△ABM=,过点B作BN⊥AM,垂足为N,O是对角线AC,BD的交点,连接ON,则ON的长为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将矩形(长方形)ABCD沿EF折叠,使点B与点D重合,点A落在G处,连接BE,DF,则下列结论:①DE=DF,②FB=FE,③BE=DF,④B、E、G三点在同一直线上,其中正确的是( )
A.①②③B.①③④C.②③④D.①②④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com