【题目】如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出t的值,如果不能,说明理由;
(3)在运动过程中,四边形BEDF能否为正方形?若能,求出t的值;若不能,请说明理由.
【答案】(1)证明见解析;(2)当t=10时,四边形AEFD是菱形;(3)四边形BEDF不能为正方形,理由见解析.
【解析】
(1)由已知条件可得RT△CDF中∠C=30°,即可知DF= CD=AE=2t;
(2)由(1)知DF∥AE且DF=AE,即四边形ADFE是平行四边形,若构成菱形,则邻边相等即AD=AE,可得关于t的方程,求解即可知;
(3)四边形BEDF不为正方形,若该四边形是正方形即∠EDF=90°,即DE∥AB,此时AD=2AE=4t,根据AD+CD=AC求得t的值,继而可得DF≠BF,可得答案.
(1)∵Rt△ABC中,∠B=90°,∠A=60°,
∴∠C=90°∠A=30°.
又∵在Rt△CDF中,∠C=30°,CD=4t
∴DF=CD=2t,
∴DF=AE;
(2)∵DF∥AB,DF=AE,
∴四边形AEFD是平行四边形,
当AD=AE时,四边形AEFD是菱形,
即604t=2t,解得:t=10,
即当t=10时,四边形AEFD是菱形;
(3)四边形BEDF不能为正方形,理由如下:
当∠EDF=90°时,DE∥BC.
∴∠ADE=∠C=30°
∴AD=2AE
∵CD=4t,
∴DF=2t=AE,
∴AD=4t,
∴4t+4t=60,
∴t= 时,∠EDF=90°
但BF≠DF,
∴四边形BEDF不可能为正方形。
科目:初中数学 来源: 题型:
【题目】已知反比例函数的图象过点A(3,2).
(1)试求该反比例函数的表达式;
(2)M(m,n)是反比例函数图象上的一动点,其中0<m<3,过点M作直线MB∥x轴,交y轴于点B;过点A作直线AC∥y轴,交x轴于点C,交直线MB于点D.当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:A(1,0),B(0,4),C(4,2).
(1)在坐标系中描出各点(小正方形网格的长度为单位1),画出△ABC;(三点及连线请加黑描重)
(2)若△A1B1C1与△ABC关于y轴对称,请在图中画出△A1B1C1;
(3)点Q是x轴上的一动点,则使QB+QC最小的点Q坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC=15,点D是边BC上一动点(不与B、C重合),∠ADE=∠B=α,DE交AC于点E,且tanα=有以下的结论:① △ADE∽△ACD;② 当CD=9时,△ACD与△DBE全等;③ △BDE为直角三角形时,BD为12或;④ 0<BE≤,其中正确的结论是___________(填入正确结论的序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.
(1)求证:△ADE∽△ABC;
(2)若AD=3,AB=5,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将△ABC沿DE、EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠CDO+∠CFO=100°,则∠C的度数为( )
A. 40° B. 41° C. 42° D. 43°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2+(2﹣a)x﹣2(a>0)的图象与x轴交于A、B两点(点A在点B的右侧),与y轴交于点C.给出下列结论:
①在a>0的条件下,无论a取何值,点A是一个定点;
②在a>0的条件下,无论a取何值,抛物线的对称轴一定位于y轴的左侧;
③y的最小值不大于﹣2;
④若AB=AC,则a=.
其中正确的结论有( )个.
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正方形DEFG的顶点D、E在的边BC上,顶点G、F分别在边AB、AC上如果,的面积是6,那么这个正方形的边长是
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在中,,分别是,的中点,是对角线,交延长线于.若四边形是菱形,则四边形是( )
A. 平行四边形 B. 矩形
C. 菱形 D. 正方形
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com