分析 连接GE,由矩形的性质得出∠BAD=∠C=ADC=∠B=90°,AB=CD,AD=BC,由折叠的性质得出∠DAG=∠EAG=22.5°,AG⊥DE,由线段垂直平分线的性质得出GD=GE,得出∠GDE=∠GED=∠DAG=22.5°,由三角形的外角性质得出∠CGE=45°,证出△CEG是等腰直角三角形,得出GD=GE=$\sqrt{2}$CG,即可得出结果.
解答 解:如图所示:连接GE,![]()
∵四边形ABCD是矩形,
∴∠BAD=∠C=ADC=∠B=90°,AB=CD,AD=BC,
由折叠的性质得:∠DAE=∠BAE=45°,∠DAG=∠EAG=22.5°,AG⊥DE,
∴GD=GE,
∴∠GDE=∠GED=∠DAG=22.5°,
∴∠CGE=∠GDE+∠GED=45°,
∴△CEG是等腰直角三角形,
∴GD=GE=$\sqrt{2}$CG,
∴CG:GD=$\frac{\sqrt{2}}{2}$.
故答案为:$\frac{\sqrt{2}}{2}$.
点评 本题考查了矩形的性质、翻折变换的性质、线段垂直平分线的性质、等腰三角形的性质、三角形的外角性质、等腰直角三角形的判定与性质;熟练掌握翻折变换和矩形的性质,证明△CEG是等腰直角三角形是解决问题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{5}{a}=\frac{4}{b}$ | B. | $\frac{a}{4}=\frac{b}{5}$ | C. | $\frac{a}{b}=\frac{4}{5}$ | D. | $\frac{4}{a}=\frac{b}{5}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 楠楠同学正确,他的理论依据是“直线段最短” | |
| B. | 浩浩同学正确,他的理论依据是“两点确定一条直线” | |
| C. | 楠楠同学正确,他的理论依据是“垂线段最短” | |
| D. | 浩浩同学正确,他的理论依据是“两点之间,线段最短” |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com